Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
theo bài ra ta có :
\(7^{15}+7^{14}=7^{14}.7+7^{14}.1=7^{14}.\left(7+1\right)=7^{14}.8\text{ chia hết cho 8}\)
=> ( đpcm )
tích nha
Bài 1:
\(=\dfrac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{24}\cdot2^{12}\cdot5^{12}\cdot3^3\cdot2^9}=\dfrac{3}{5^2}=\dfrac{3}{25}\)
Chúng tỏ rằng :
a) M = 4^10 - 2^18 chia hết cho 3
M = 4^10 - 2^18
M = ( 2^2 )^10 - 2^18
M = 2^20 - 2^18
M = 2^18 . 2^2 - 2^18 . 1
M = 2^18 . 4 - 2^18 . 1
M = 2^18 . ( 4 - 1 )
M = 2^18 . 3 chia hết cho 3
Vậy M chia hết cho 3
1) gọi hai số chẵn liên tiếp là 2n và 2n+2 ( với n là số tự nhiên)
=> tích của hai số tự nhiên liên tiếp:
2n(2n+2)=2n[2(n+1)]=4n(n+1)
ta thấy: 2n(2n+1)\(⋮\)2 ; 4n(n+1)\(⋮\)4
=> 2n(2n+2)\(⋮\)8
vậy tích của hai số chẵn liên tiếp thì chia hết cho 8
8^7 - 2^18 = 8^7 - (2^3)^6 = 8^7 - 8^6
= 8^6 ( 8 -1 ) = 7 . 8 .8^5 = 56 . 8^5 = 14 .2 .8^5 chia hết cho 14
vậy 8^7-12^18 chia hết cho 14