\(m\sqrt[m]{a}+n\sqrt[n]{b}\ge\left(m+n\right)\sqrt[m+n]{ab}\) với a;b>0...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)

<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)

<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)

<=>\(a+b\ge2\sqrt{ab}\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

Lời giải:

Từ \(\sqrt{a}+\sqrt{b}=1\Rightarrow (\sqrt{a}+\sqrt{b})^2=1\)

\(\Rightarrow a+b+2\sqrt{ab}=1\)

Áp dụng BĐT Cô-si cho các số dương:

\(1=(a+b)+2\sqrt{ab}\geq 2\sqrt{(a+b).2\sqrt{ab}}\)

\(\Rightarrow 1\geq 4(a+b).2\sqrt{ab}\) (bình phương 2 vế)

\(\Rightarrow \frac{1}{8}\geq (a+b)\sqrt{ab}\)

Ta cớ đpcm

Dấu "=" xảy ra khi \(a=b=\frac{1}{4}\)

Bài 1:

Ta có: a,b không âm(gt)

\(\Leftrightarrow\sqrt{a}\)\(\sqrt{b}\) được xác định

Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

17 tháng 6 2018

a) CM:\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)

\(\Leftrightarrow n+1+n=\left(n+1-n\right)\left(n+1+n\right)\)

\(\Leftrightarrow2n+1=1\left(2n+1\right)\)

\(\Leftrightarrow2n+1=2n+1\)

\(\Rightarrow\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)

17 tháng 6 2018

Câu b) ý 2:

Áp dụng BĐT cô si ta có :

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\\ \dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\\ \dfrac{c}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{c}{b}}\\ \Leftrightarrow2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge2\left(\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\right)\\ \Rightarrowđpcm\)

19 tháng 3 2019

Vì a ; b ; c dương , áp dụng BĐT Cô - si cho các cặp số dương , ta có :

\(\frac{c}{b}+\frac{a-c}{a}\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}\)

\(\frac{c}{a}+\frac{b-c}{b}\ge2\sqrt{\frac{c\left(b-c\right)}{ab}}\)

\(\Rightarrow2\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}+2\sqrt{\frac{c\left(b-c\right)}{ab}}\)

\(\Rightarrow1\ge\frac{\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\)

\(\Rightarrow\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{c}{b}=\frac{a-c}{a};\frac{c}{a}=\frac{b-c}{b}\)

\(\Leftrightarrow\frac{c}{b}+\frac{c}{a}=1\) \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)

\(a;b\ge c\Rightarrow a=b=2c\)

Vậy ...

NV
19 tháng 3 2019

BĐT cần chứng minh tương đương: \(\sqrt{\frac{c\left(a-c\right)}{ba}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)

Áp dụng BĐT Cauchy:

\(VT\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)=\frac{1}{2}\left(\frac{a-c+c}{a}+\frac{c+b-c}{b}\right)=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=2c\)