Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) giả sử tổng số hữu tỉ và số vô tỉ là số hữu tỉ
Ta có a+b=c(a,c là số hữu tỉ ; b là số vô tỷ)
=> b=c-a
mà c-a là số hữu tỉ ( do a,c là số hữu tỉ)
=> b là số hữu tỉ trái đề bài
Vậy tổng số hữu tỉ và số vô tỉ là số vô tỉ
b) phần này cần điều kiện số hữu tỉ khi nhân kia phải khác 0
Giả sử tích một số vô tỉ và một số hữu tỉ là 1 số hữu tỉ
Ta có a.b=c (a,c là số hữu tỉ ; b là số vô tỷ, a khác 0)
=> b=c/a
mà c/a là số hữu tỉ ( do a,c là số hữu tỉ)
=> b là số hữu tỉ trái đề bài
Vậy tích một số vô tỉ và một số hữu tỉ là 1 số vô tỉ
Là một số vô tỉ
VD căn 2 là số vô tỉ ; 1 là hữu tỉ
căn 2 : 1 = căn 2 là số vô tỉ
Gọi a là số vô tỉ, b là số hữu tỉ.
Ta có \(\dfrac{a}{b}\) là sô vô tỉ vì nếu \(\dfrac{a}{b}=b'\)là số hữu tỉ thì \(a=b\). \(b'\) suy ra a là số hữu tỉ, trái với giả thiết a là số vô tỉ.
Gọi a là số vô tỉ, b là số hữu tỉ khác 0.
Tích ab là số vô tỉ vì nếu ab = b' là số hữu tỉ thì \(a=\dfrac{b'}{b}\) suy ra a là số hữu tỉ, vô lí !
Gọi số hữu tỉ đã cho là q ; số vô tỉ đã cho là i
Giả sử q - i = p ; p là số hữu tỉ
=> i = q - p
Vì p; q là số hữu tỉ => q - p là số hữu tỉ => i là số hữu tỉ ( Trái với đề bài)
=> Điều giả sử sai
vậy p là số vô tỉ
cô loan làm rồi pa ạ.he he