K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

Tam giác ABC có 3 đường trung tuyến AM, BN, CP cắt nhau tại G

Ta có: AM= 3/2 AG, BN=3/2 BG, CP=3/2 CG.... Ta sẽ chứng minh: AM+BN>CP <=> AG+BG>CG

Chứng minh: Trên tia đối của PG lấy sao cho PQ=PG hay GQ=GC

                   Tam giác AQB = t.giác BGA ( tự chứng minh) => AQ=BG

Xét t.giác AQG, có: AG+ AQ> GQ ( bất đẳng thức trong tam giác)

=> AG + AQ > CG => .....

17 tháng 4 2016

Bạn phải vẽ hình đấy ,....

24 tháng 3 2017

leu

10 tháng 9 2020

Vẽ tam giác ABC với các trung tuyến AD, BE, CF, trọng tâm (giao điểm 3 trung tuyến) là G.

Gọi M là điểm đối xứng của A qua D ---> D vừa là trung điểm AM, vừa trung điểm BC ---> ABMC là hình bình hành

---> BM=AC

Xét tam giác ABM---> \(AD< AB+BM\Leftrightarrow2AM< AB+AC\)(BĐT tam giác)

Hoàn toàn tương tự \(\Rightarrow\hept{\begin{cases}2BE< BC+BA\\2CF< CA+CB\end{cases}}\)

Cộng các BĐT vế theo vế \(\Rightarrow2\left(AM+BE+CF\right)< 2\left(AB+BC+CA\right)\Rightarrow AM+BE+CF< AB+BC+CA\)--->ĐPCM

Vì G là trọng tâm tam giác ABC nên \(AG=\frac{2}{3}AM,BG=\frac{2}{3}BE,CG=\frac{2}{3}CF\)

Xét tam giác AGB \(\Rightarrow AB< AG+BG=\frac{2}{3}\left(AM+BE\right)\)(BĐT tam giác)

Hoàn toàn tương tự \(\Rightarrow\hept{\begin{cases}BC< \frac{2}{3}\left(BE+CF\right)\\CA< \frac{2}{3}\left(CF+AM\right)\end{cases}}\)

Cộng các BĐT vế theo vế \(\Rightarrow AB+BC+CA< 2.\frac{2}{3}\left(AM+BE+CF\right)\)

\(\Rightarrow\frac{3}{4}\left(AB+BC+CA\right)< AM+BE+CF\)--->ĐPCM