\(\overline{abcd}\) chia hết cho 9 ↔ a + 3b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2016

a) \(abcdeg=1000abc+deg\)
\(=1001abc-abc+deg\)

\(=1001abc-\left(abc-deg\right)\)

\(=abc\cdot13\cdot77-\left(abc-deg\right)\)

Vì abc . 13 . 77 chia hết cho 13 ; abc - deg chia hết cho 13

=> abcdeg chia hết cho 13 ( đpcm )

19 tháng 11 2016

b) Ta có : \(abc\) chia hết cho 29\(=>\left(1000a+100b+10c+d\right)\) chia hết cho 29

\(=>2000a+200b+20c+2d\) chia hết cho 29

\(=>\left(2001a+203b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(=>\left(29\cdot69a+29\cdot7b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(=>29\cdot\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(29\cdot\left(69a+7b+c+d\right)\) chia hết cho 29 và \(29.\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(=>a+3b+9c+27d\) chia hết cho 29

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

7 tháng 11 2016

Ta phân tích các số ra bao quát hệ cơ số 10 :

abcd = a x 1000 + b x 100 + c x 10 + d 

 nếu ta thấy có thể gộp lại như sau :

abcd = cd x 290 thì chắc chắn là abcd chia hết cho 29 

Vậy a + 3b + 9c + 27d chắc chắn cũng chia hết cho 29 

b ) Tương tự cách lí luận câu a 

20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

11 tháng 10 2017

a)Ta có\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4n}\equiv1\left(mod5\right)\)

                                            \(\Rightarrow3^{4n+1}\equiv3\left(mod5\right)\)

                                            \(\Rightarrow3^{4n+1}+2\equiv5\left(mod5\right)\)

                                            \(\Rightarrow3^{4n+1}+2⋮5\)

Vậy\(3^{4n+1}+2⋮5\)

b)Ta có\(2^4\equiv1\left(mod5\right)\Rightarrow2^{4n}\equiv1\left(mod5\right)\Rightarrow2^{4n+1}\equiv2\left(mod5\right)\)

\(\Rightarrow2^{4n+1}+3\equiv5\left(mod5\right)\Rightarrow2^{4n+1}+3⋮5\)

Vậy\(2^{4n+1}+3⋮5\)

c)Ta có\(9^2\equiv1\left(mod10\right)\Rightarrow9^{2n}\equiv1\left(mod10\right)\)

\(\Rightarrow9^{2n+1}\equiv9\left(mod10\right)\Rightarrow9^{2n+1}+1\equiv10\left(mod10\right)\)

\(\Rightarrow9^{2n+1}+1⋮10\)

Vậy\(9^{2n+1}+1⋮10\)

11 tháng 10 2017

a) 34n + 1 + 2                                       

=(34)n x 3 + 2

= 81n x 3 + 2

...1 x 3 + 2

...5 chia hết cho 5

b) 24n+1 + 3

= (24)n x 2 + 3

= 16n x 2 + 3

...6 x 2 + 3

...5 chia hết cho 5

c) 92n + 1 + 1

= (92)n x 9 + 1

= 81n x 9 + 1

=...1 x 9 + 1

...0 chia hết cho 10

22 tháng 8 2021

fuck mày

 

 

22 tháng 8 2021

ngu như chó