K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

a ,  x^2 - 2x - (3x^2 - 5x + 4) + (2x^2 - 3x + 7) 

= x^2 - 2x - 3x^2 + 5x - 4 + 2x^2 - 3x + 7 

= (x^2 - 3x^2 + 2x^2) + (-2x + 5x - 3x) + (-4 + 7) 

=  3 

Vậy GTBT ko phụ thuộc vào biến 

b,  (2x^3 - 4x^2 + x - 1) - (5 - x^2 + 2x^3) + 3x^2 - x 

= 2x^3 - 4x^2 + x - 1 - 5 + x^2 - 2x^3 + 3x^2 - x 

= (2x^3 - 2x^3) + (-4x^2 + x^2 + 3x^2 ) + (x - x) + (-1 - 5) 

= -6  

Vậy GTBT ko phụ thuộc vào biến 

a) x2 -2x -( 3x2 -5x +4 )+(2x2 - 3x +7 )

= x2 -2x - 3x2 + 5x - 4 + 2x2 - 3x +7 

= 3

Vậy biểu thức không phụ thuộc vào biến.

b) ( 2x3 -4x2 +x - 1)- (5 - x2 +2x3 ) +3x2 - x 

 =  2x3 -4x2 +x - 1 - 5 + x2 - 2x3  +3x2 - x

= -1 - 5 = -6

Vậy biểu thức không phụ thuộc vào biến x 

4 tháng 5 2018

a) ta có: \(A_{\left(x\right)}=2x.\left(x+3\right)-3x^2.\left(x+2\right)+x.\left(3x^2+4x-6\right)\)

           \(A_{\left(x\right)}=2x^2+6x-3x^3-6x^2+3x^3+4x^2-6x\)

         \(A_{\left(x\right)}=\left(2x^2-6x^2+4x^2\right)+\left(6x-6x\right)+\left(3x^3-3x^3\right)\)

       \(A_{\left(x\right)}=0\)

=> A(x) không phụ thuộc vào giá trị của x

phần b bn lm tương tự nha! 

4 tháng 7 2015

\(A=2x^2+x-x^3-2x^2+x^3-x+3=3\)=> k phụ thuộc vào biến

\(B=24-4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3=24\)=> k phụ thuộc vào biến

8 tháng 4 2018

a) M(x) + N(x) + P(x) = x5 + 7x4 - 6x3 - 3x2 + x - 4

2 tháng 8 2020

\(A=7.\left(x^2-5x+3\right)-x.\left(7x-35\right)-14\)

\(A=7x^2-35x+21-7x^2+35x-14\)

\(A=7\)

       \(B=\left(4x-5\right).\left(x+2\right)-\left(x+5\right).\left(x-3\right)-3x^2-x\)

\(B=4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x\)

\(B=5\)

     \(C=\left(6x-5\right).\left(x+8\right)-\left(3x-1\right).\left(2x+3\right)-9.\left(4x-3\right)\)

\(C=6x^2+48x-5x-40-6x^2-9x+2x+3-36x+27\)

\(C=-10\)

Học tốt 

23 tháng 4 2019

M (x)- N (x)

= \(3x^4+5x^3-3x^2+4x-2\) - \(2x^4-5x^3+4x^2-4x+5\)

= \(x^4+x^2+3\)

Do \(x^4\ge0\) ( với mọi x )

\(x^2\ge0\) ( với mọi x )

=> \(x^4+x^2+3>0\) ( với mọi x )

Vậy M(x) - N(x) vô nghiệm

22 tháng 4 2019

Giúp mình nha ! Mai thi rồi ! Thanh kiều ! hehe

6 tháng 4 2017

Đáp án đúng phải là

\(h\left(x\right)=2x^5+5x^4+x^3-x^2-3x+6\)

1 tháng 10 2020

a ) M(x) + N(x) + P(x) = (\(3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)) + (\(-x^2-x^4+4x^3-x^2-5x^3+3x+1+x\)) + (\(1+2x^5-3x^2+x^5+3x^3-x^4-2x\))

= \(3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\) \(-x^2-x^4+4x^3-x^2-5x^3+3x+1+x\)\(1+2x^5-3x^2+x^5+3x^3-x^4-2x\)
= ( \(3x^3-3x^3+4x^3-5x^3+3x^3\) ) + ( \(x^2+x^2-x^2-x^2-3x^2\) ) + (\(4x^4+5x^4-x^4-x^4\) ) + ( \(-x+3x+x-2x\) ) + ( \(-6+1+1\) ) + (\(2x^5+x^5\) )
= \(2x^3-3x^2+7x^4+x-4+3x^5\)