Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n3−nn3−n = n(n2−1)n(n2−1) = (n−1).n.(n+1)(n−1).n.(n+1) Vì (n−1).n.(n+1)(n−1).n.(n+1) là tích 3 số nguyên liên tiếp nên sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vậy tích trên chia hết cho 6 Do đó : n3−nn3−n chia hết cho 6 với mọi số nguyên n.
Chứng minh bằng phản chứng :
Giả sử rằng tồn tại ít nhất một số tự nhiên n sao cho thỏa mãn \(n^2+7n+2014\) chia hết cho 9
Khi đó đặt n = 9k (k thuộc N)
Ta có \(n^2+7n+2014=\left(9k\right)^2+7.\left(9k\right)+2014=9.\left(9k^2+7k+223\right)+7\)
Từ đó ta thấy ngay điều giả sử sai, suy ra đpcm.
Ta có
A = n2 + 7n + 2014 = (n + 2)(n + 5) + 2004
Giả sử A chia hết cho 9 thì A = 9k
=> (n + 2)(n + 5) + 2004 = 9k (k tự nhiên)
Ta thấy 2004 chia hết cho 3 nên (n + 2)(n + 5) chia hết cho 3. Vậy 1 trong hai thừa số phải chia hết cho 3
Mà n + 5 - n - 2 = 3 chia hết cho 3 nên cả (n + 5) và (n + 2) đều chia hết cho 3.
Hay (n + 5)(n + 2) chia hết cho 9.
Mà A lại chia hết cho 9 nên 2004 chia hết cho 9 (vô lý)
Vậy không tồn tại số tự nhiên nào để A chia hết cho 9
n^2+n+1=n.(n+1)+1
nếu n+1 chia hết cho 9
=> n.(n+1) chia hết cho 9
nhưng n.(n+1)+1 ko chia hết cho 9
=> n.(n+1)+1 ko chia hết cho 9
nếu n chia hết cho 9
=> n^2 chia hết cho 9
nhưng (n+1) ko chia hết cho 9
=> n^2+n+1 ko chia het cho 9
nên bất kì giá trị nào của n thì n^2+n+1 ko chia hết cho 9
Lời giải:
Giả sử $M=a^2+5a+7\vdots 9$ với mọi $a$ nguyên.
$\Rightarrow a^2+5a+7\vdots 3$
$\Rightarrow a^2+5a+7-3a-6\vdots 3$
$\Rightarrow a^2+2a+1\vdots 3\Rightarrow (a+1)^2\vdots 3$
$\Rightarrow a+1\vdots 3$
$\Rightarrow a=3k-1$ với $k$ nguyên.
Khi đó:
$M=a^2+5a+7=(3k-1)^2+5(3k-1)+7=9k^2-6k+1+15k-5+7$
$=9k^2+9k+3\not\vdots 9$
Ta có đpcm.