K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

Lời giải:

Giả sử $M=a^2+5a+7\vdots 9$ với mọi $a$ nguyên.

$\Rightarrow a^2+5a+7\vdots 3$

$\Rightarrow a^2+5a+7-3a-6\vdots 3$

$\Rightarrow a^2+2a+1\vdots 3\Rightarrow (a+1)^2\vdots 3$

$\Rightarrow a+1\vdots 3$

$\Rightarrow a=3k-1$ với $k$ nguyên.

Khi đó:

$M=a^2+5a+7=(3k-1)^2+5(3k-1)+7=9k^2-6k+1+15k-5+7$

$=9k^2+9k+3\not\vdots 9$

Ta có đpcm.

26 tháng 1 2016

troi lanh em khong cha loi duoc

13 tháng 11 2016

Ta có : n3−nn3−n = n(n2−1)n(n2−1) = (n−1).n.(n+1)(n−1).n.(n+1) Vì (n−1).n.(n+1)(n−1).n.(n+1) là tích 3 số nguyên liên tiếp nên sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vậy tích trên chia hết cho 6 Do đó : n3−nn3−n chia hết cho 6 với mọi số nguyên n.

21 tháng 3 2017

ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n... 
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6. 
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm) .

10 tháng 12 2016

Chứng minh bằng phản chứng : 

Giả sử rằng tồn tại ít nhất một số tự nhiên n sao cho thỏa mãn \(n^2+7n+2014\) chia hết cho 9

Khi đó đặt n = 9k (k thuộc N)
 

Ta có \(n^2+7n+2014=\left(9k\right)^2+7.\left(9k\right)+2014=9.\left(9k^2+7k+223\right)+7\)

Từ đó ta thấy ngay điều giả sử sai, suy ra đpcm.

11 tháng 12 2016

Ta có

A = n2 + 7n + 2014 = (n + 2)(n + 5) + 2004

Giả sử A chia hết cho 9 thì A = 9k 

=> (n + 2)(n + 5) + 2004 = 9k (k tự nhiên)

Ta thấy 2004 chia hết cho 3 nên (n + 2)(n + 5) chia hết cho 3. Vậy 1 trong hai thừa số phải chia hết cho 3

Mà n + 5 - n - 2 = 3 chia hết cho 3 nên cả (n + 5) và (n + 2) đều chia hết cho 3.

Hay (n + 5)(n + 2) chia hết cho 9.

Mà A lại chia hết cho 9 nên 2004 chia hết cho 9 (vô lý)

Vậy không tồn tại số tự nhiên nào để A chia hết cho 9

21 tháng 8 2016

n^2+n+1=n.(n+1)+1

nếu n+1 chia hết cho 9

=> n.(n+1) chia hết cho 9

nhưng n.(n+1)+1 ko chia hết cho 9

=> n.(n+1)+1 ko chia hết cho 9

nếu n chia hết cho 9

=> n^2 chia hết cho 9

nhưng (n+1) ko chia hết cho 9

=> n^2+n+1 ko chia het cho 9

nên bất kì giá trị nào của n thì n^2+n+1 ko chia hết cho 9

21 tháng 8 2016

khó hị?????