\(\left(x^3+6x^2-19x-24\right)⋮6\) \(với\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

1.  Ta có \(x^3+6x^2-19x-24=x^3+x^2+5x^2+5x-24x-24\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)-24\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x-24\right)\)

\(=\left(x+1\right)\left(x+8\right)\left(x-3\right)\)

Đặt x - 3 = k, biểu thức trở thành A  =  k(k + 4)(k + 11)

Ta thấy ngay A chứa ít nhất một số nhân tử là số chẵn nên A chia hết cho 2. Ta chỉ cần chứng minh A chia hết 3.

Thật vậy, nếu k = 3a thì A chia hết cho A.

Nếu k = 3a + 1 thì k + 11 = 3a + 1 + 11 = 3a + 12 chia hết 3

Nếu k = 3a + 2 thì k + 4 = 3a + 2 + 4 = 3a + 6 chia hết 3

Vậy A chia hết cho 2 và 3 mà (2;3) = 1 nên A chia hết cho 6.

2.  \(y^2+2\left(x^2+1\right)=2y\left(x+1\right)\)

\(\Leftrightarrow y^2+2x^2+2=2xy+2y\)

\(\Leftrightarrow y^2+2x^2+2-2xy-2y=0\)

\(\Leftrightarrow2y^2+4x^2+4-4xy-4y=0\)

\(\Leftrightarrow\left(y^2-4y+4\right)+\left(4x^2-4xy+y^2\right)=0\)

\(\Leftrightarrow\left(y-2\right)^2+\left(2x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(y-2\right)^2=0\\\left(2x-y\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\2x=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy x = 1, y = 2

4 tháng 10 2019

a/ \(f\left(x\right)=x^3-6x^2+11x-6\)

\(=x^3-x^2-5x^2+5x+6x-6\)

\(=x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-5x+6\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

b/ \(f\left(x\right)=x^3-19x-30\)

\(=x^3+3x^2-3x^2-9x-10x-30\)

\(=x^2\left(x+3\right)-3x\left(x+3\right)-10\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x-10\right)\)

\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)

c/ \(f\left(x\right)=x^3+4x^2+4x+3\)

\(=x^3+3x^2+x^2+3x+x+3\)

\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+x+1\right)\)

26 tháng 7 2018

\(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=8n+8\)

\(=8\left(n+1\right)⋮8\left(đpcm\right)\)

\(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=0\cdot2n\)

\(=0⋮24\)

26 tháng 7 2018

 a.                                                  Giải :

             Ta có:

                                   (n+3)2 - (n-1)2 = [(n+3)(n+3)-(n-1)(n-1)]

                                        =[(n2+9)-(n2-1)]=n2-n2+9-1

                                       =9-1=8(đpcm)

29 tháng 6 2017

a ) \(-x^2+6x-15\)

\(\Leftrightarrow-x^2+6x-9-6\)

\(\Leftrightarrow-\left(x^2-6x+9\right)-6\)

Ta có : \(\left(x-3\right)^2\ge0\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2-6\le-6\)

\(\RightarrowĐPCM.\)

b ) \(\left(x-3\right)\left(1-x\right)-2\)

\(\Leftrightarrow\left(x-x^2-3+3x\right)-2\)

\(\Leftrightarrow\left(-x^2+4x-3\right)-2\)

\(\Leftrightarrow-x^2+4x-3-2\)

\(\Leftrightarrow-x^2+4x-4-1\)

\(\Leftrightarrow-\left(x^2-4x+4\right)-1\)

\(\Leftrightarrow-\left(x-2\right)^2-1\)

Ta có : \(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow-\left(x-2\right)^2\le0\)

\(\Leftrightarrow-\left(x-2\right)^2-1\le-1\)

\(\LeftrightarrowĐPCM.\)

c ) \(\left(x+4\right)\left(2-x\right)-10\)

\(\Leftrightarrow\left(2x-x^2+8-4x\right)-10\)

\(\Leftrightarrow\left(-x^2-2x+8\right)-10\)

\(\Leftrightarrow-x^2-2x+8-10\)

\(\Leftrightarrow-x^2-2x-2\)

\(\Leftrightarrow-x^2-2x-1-1\)

\(\Leftrightarrow-\left(x^2+2x+1\right)-1\)

\(\Leftrightarrow-\left(x+1\right)^2-1\)

Ta có : \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow-\left(x+1\right)^2\le0\)

\(\Leftrightarrow-\left(x+1\right)^2-1\le-1\)

\(\LeftrightarrowĐPCM.\)

29 tháng 6 2017

a) \(-x^2+6x-15=-x^2+6x-9-6=-\left(x-3\right)^2-6\)

Do \(-\left(x-3\right)^2\le0\forall x\in Q\)

\(\Rightarrow......................\le0\forall x\in Q\)

Áp dụng hằng đẳng nhé mk ngại làm lắm

Bài 2:

a)A= \(6x^2\)\(-11x+3\)

<=>A=\(6x^2\)\(-2x-9x+3\)

<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)

=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)

<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)

=>A=(3x-1)(2x+3)

9 tháng 7 2017

một lượt tối đa 2 câu làm vậy có thánh nào dmas beensg tới

9 tháng 7 2017

Chữ gì phía gần cuối thế?

18 tháng 9 2018

d) ( n + 7 )2 - ( n - 5 )2

= n2 + 14n + 49 - n2 + 10n - 25

= 24n + 24

= 24 ( n + 1 ) chia hết cho 24 ( đpcm )

18 tháng 9 2018

e) 

( 7n + 5 )2 - 25

= ( 7n + 5 )2 - 52

= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )

= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )