Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có \(x^3+6x^2-19x-24=x^3+x^2+5x^2+5x-24x-24\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)-24\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x-24\right)\)
\(=\left(x+1\right)\left(x+8\right)\left(x-3\right)\)
Đặt x - 3 = k, biểu thức trở thành A = k(k + 4)(k + 11)
Ta thấy ngay A chứa ít nhất một số nhân tử là số chẵn nên A chia hết cho 2. Ta chỉ cần chứng minh A chia hết 3.
Thật vậy, nếu k = 3a thì A chia hết cho A.
Nếu k = 3a + 1 thì k + 11 = 3a + 1 + 11 = 3a + 12 chia hết 3
Nếu k = 3a + 2 thì k + 4 = 3a + 2 + 4 = 3a + 6 chia hết 3
Vậy A chia hết cho 2 và 3 mà (2;3) = 1 nên A chia hết cho 6.
2. \(y^2+2\left(x^2+1\right)=2y\left(x+1\right)\)
\(\Leftrightarrow y^2+2x^2+2=2xy+2y\)
\(\Leftrightarrow y^2+2x^2+2-2xy-2y=0\)
\(\Leftrightarrow2y^2+4x^2+4-4xy-4y=0\)
\(\Leftrightarrow\left(y^2-4y+4\right)+\left(4x^2-4xy+y^2\right)=0\)
\(\Leftrightarrow\left(y-2\right)^2+\left(2x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(y-2\right)^2=0\\\left(2x-y\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\2x=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy x = 1, y = 2
a/ \(f\left(x\right)=x^3-6x^2+11x-6\)
\(=x^3-x^2-5x^2+5x+6x-6\)
\(=x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
b/ \(f\left(x\right)=x^3-19x-30\)
\(=x^3+3x^2-3x^2-9x-10x-30\)
\(=x^2\left(x+3\right)-3x\left(x+3\right)-10\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x-10\right)\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
c/ \(f\left(x\right)=x^3+4x^2+4x+3\)
\(=x^3+3x^2+x^2+3x+x+3\)
\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
\(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=8n+8\)
\(=8\left(n+1\right)⋮8\left(đpcm\right)\)
\(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=0\cdot2n\)
\(=0⋮24\)
a. Giải :
Ta có:
(n+3)2 - (n-1)2 = [(n+3)(n+3)-(n-1)(n-1)]
=[(n2+9)-(n2-1)]=n2-n2+9-1
=9-1=8(đpcm)
a ) \(-x^2+6x-15\)
\(\Leftrightarrow-x^2+6x-9-6\)
\(\Leftrightarrow-\left(x^2-6x+9\right)-6\)
Ta có : \(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2-6\le-6\)
\(\RightarrowĐPCM.\)
b ) \(\left(x-3\right)\left(1-x\right)-2\)
\(\Leftrightarrow\left(x-x^2-3+3x\right)-2\)
\(\Leftrightarrow\left(-x^2+4x-3\right)-2\)
\(\Leftrightarrow-x^2+4x-3-2\)
\(\Leftrightarrow-x^2+4x-4-1\)
\(\Leftrightarrow-\left(x^2-4x+4\right)-1\)
\(\Leftrightarrow-\left(x-2\right)^2-1\)
Ta có : \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\le0\)
\(\Leftrightarrow-\left(x-2\right)^2-1\le-1\)
\(\LeftrightarrowĐPCM.\)
c ) \(\left(x+4\right)\left(2-x\right)-10\)
\(\Leftrightarrow\left(2x-x^2+8-4x\right)-10\)
\(\Leftrightarrow\left(-x^2-2x+8\right)-10\)
\(\Leftrightarrow-x^2-2x+8-10\)
\(\Leftrightarrow-x^2-2x-2\)
\(\Leftrightarrow-x^2-2x-1-1\)
\(\Leftrightarrow-\left(x^2+2x+1\right)-1\)
\(\Leftrightarrow-\left(x+1\right)^2-1\)
Ta có : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow-\left(x+1\right)^2\le0\)
\(\Leftrightarrow-\left(x+1\right)^2-1\le-1\)
\(\LeftrightarrowĐPCM.\)
a) \(-x^2+6x-15=-x^2+6x-9-6=-\left(x-3\right)^2-6\)
Do \(-\left(x-3\right)^2\le0\forall x\in Q\)
\(\Rightarrow......................\le0\forall x\in Q\)
Áp dụng hằng đẳng nhé mk ngại làm lắm
Bài 2:
a)A= \(6x^2\)\(-11x+3\)
<=>A=\(6x^2\)\(-2x-9x+3\)
<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)
=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)
<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)
=>A=(3x-1)(2x+3)
d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )