\(\left(\sqrt{2014}-\sqrt{2013}\right).\left(\sqrt{2014}+\sqrt{2013}\right)=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

\(\left(\sqrt{2014}-\sqrt{2013}\right).\left(\sqrt{2014}+\sqrt{2013}\right)\)

=> \(\sqrt{2014^2}-\sqrt{2013^2}\)

=> \(2014-2013\)

\(=1\)

Vậy ..............

26 tháng 6 2019

\(\left(\sqrt{2014}-\sqrt{2013}\right).\left(\sqrt{2014}+\sqrt{2013}\right)=1\)

\(VT=\left(\sqrt{2014}-\sqrt{2013}\right).\left(\sqrt{2014}+\sqrt{2013}\right)\)

\(=\sqrt{2014^2}-\sqrt{2013^2}\)

\(=2014-2013\)

\(=1=VP\left(dpcm\right)\)

Vậy....

24 tháng 10 2019

Ta có: \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)

\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+2013}=x-\sqrt{x^2+2013}\)

\(x+y=\sqrt{x^2+2013}-\sqrt{y^2+2013}\)(1)

Nhân liên hợp tương tự nhân \(y-\sqrt{y^2+2013}\)vào hai về rút được

\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\)(2)

Cộng vế theo vế (1)(2) ta được \(x+y=0\Rightarrow x=-y\)

Thay vào \(A=\left(-y\right)^{2014}-y^{2014}+1=1\)

3 tháng 10 2015

\(\sqrt{\left(x-2013\right)^{10}}+\sqrt{\left(x-2014\right)^{14}}=1\)

Mà \(\sqrt{\left(x-2013\right)^{10}};\sqrt{\left(x-2014\right)^{14}}\ge0\)

=> \(\sqrt{\left(x-2013\right)^{10}}=0;\sqrt{\left(x-2014\right)^{14}}=1\)

HOặc \(\sqrt{\left(x-2013\right)^{10}}=1;\sqrt{\left(x-2013\right)^{14}}=0\)

\(\sqrt{\left(x-2013\right)^{10}}=1\rightarrow x-2013\in\left\{-1;1\right\};x\in\left\{2014;2012\right\}\)

\(\sqrt{\left(x-2014\right)^{14}}=0;x-2014=0;x=2014\)

=> x = 2014 (thích hợp)

\(\sqrt{\left(x-2013\right)^{10}}=0;x-2013=0;x=2013\)

\(\sqrt{\left(x-2014\right)^{14}}=1;x-2014\in\left\{-1;1\right\};x\in\left\{2013;2015\right\}\)

=> x = 2013 (thích hợp)

Vậy x = 2013 hoặc x = 2014          

3 tháng 10 2015

Đặt \(x-2003=t\)

Ta có: \(\sqrt{t^{10}}+\sqrt{\left(1-t\right)^{14}}=1\Leftrightarrow\left|t\right|^5+\left|1-t\right|^7=1\text{(*)}\)

\(\left(\text{*}\right)\Rightarrow\left|t\right|;\left|1-t\right|\le1\)

\(+t<0\) thì \(1-t>1\text{ (loại)}\)

\(+t=0\) thì \(\left(\text{*}\right)\) thỏa

\(+0<\)\(t<1\) thì \(\left(\text{*}\right)\Leftrightarrow t^5+\left(1-t\right)^7=1\)

Do \(0<\)\(t;1-t<1\)với 0 < t < 1 nên \(t^5<\)\(t;\left(1-t\right)^7<\)\(t\)

Suy ra \(VT<\)\(t+1-t=1=VT\) (loại)

\(+t=1\) thì \(\left(\text{*}\right)\) thỏa.

\(+t>1\text{ thì }\left|t\right|>1\text{ (loại)}\)

Vậy t = 0 hoặc t = 1

<=> x = .....

 

NV
13 tháng 6 2020

c/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

13 tháng 6 2020

aaa là \(\sqrt{x+3}\) cháu gõ lộn

13 tháng 12 2015

\(\left(x+\sqrt{x^2+\sqrt{2013}}\right)\left(x-\sqrt{x^2+\sqrt{2013}}\right)=x^2-x^2-\sqrt{2013}=-\sqrt{2013}\) (1)

Theo đề bài  và (1) => dpcm

b) theo a có \(y+\sqrt{y^2+\sqrt{2013}}=-x+\sqrt{x^2+\sqrt{2013}}\)(2)

tương tự ta có \(x+\sqrt{x^2+\sqrt{2013}}=-y+\sqrt{y^2+\sqrt{2013}}\)(3)

Cộng 2 vế (2)  với (3) => x+y = -x -y

hay 2(x+y) =0 =>S= x+y =0

13 tháng 7 2018

B> \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(\left(x-\sqrt{x^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow y+\sqrt{y^2+2013}=-x+\sqrt{x^2+2013}\)

Chứng minh tương tự: \(x+\sqrt{x^2+2013}=-y+\sqrt{y^2+2013}\)

cộng vế theo vế ta được: \(x+y=-x-y\)

\(\Leftrightarrow x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2013}=-y^{2013}\)

\(\Leftrightarrow x^{2013}+y^{2013}=0\)

13 tháng 7 2018

a,Ta có x =...

x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3+1}-1}\right)}{\left(\sqrt{\sqrt{3}+1}\right)\left(\sqrt{\sqrt{3}-1}\right)}\)

x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)

x = \(\frac{\sqrt{3}.2}{\sqrt{3}}\)

x = 2

sau đó thay x=2 vào A nhé.

A=2014 !!!

26 tháng 10 2016

Điều kiện \(x,y,z\ge\frac{1}{4}\)

Cộng các phương trình trong hệ được : 

\(2\left(x+y+z\right)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)

\(\Leftrightarrow4\left(x+y+z\right)=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)

\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{cases}}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)

Từ đó thay vào yêu cầu đề bài để tính.