Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-y-\sqrt{y^2+2013}=x-\sqrt{x^2+2013}\)
⇔\(x+y=\sqrt{x^2+2013}-\sqrt{y^2+2013}\)(1)
Nhân liên hợp tương tự nhân \(y-\sqrt{y^2+2013}\)vào hai về rút được
\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\)(2)
Cộng vế theo vế (1)(2) ta được \(x+y=0\Rightarrow x=-y\)
Thay vào \(A=\left(-y\right)^{2014}-y^{2014}+1=1\)
\(\sqrt{\left(x-2013\right)^{10}}+\sqrt{\left(x-2014\right)^{14}}=1\)
Mà \(\sqrt{\left(x-2013\right)^{10}};\sqrt{\left(x-2014\right)^{14}}\ge0\)
=> \(\sqrt{\left(x-2013\right)^{10}}=0;\sqrt{\left(x-2014\right)^{14}}=1\)
HOặc \(\sqrt{\left(x-2013\right)^{10}}=1;\sqrt{\left(x-2013\right)^{14}}=0\)
\(\sqrt{\left(x-2013\right)^{10}}=1\rightarrow x-2013\in\left\{-1;1\right\};x\in\left\{2014;2012\right\}\)
\(\sqrt{\left(x-2014\right)^{14}}=0;x-2014=0;x=2014\)
=> x = 2014 (thích hợp)
\(\sqrt{\left(x-2013\right)^{10}}=0;x-2013=0;x=2013\)
\(\sqrt{\left(x-2014\right)^{14}}=1;x-2014\in\left\{-1;1\right\};x\in\left\{2013;2015\right\}\)
=> x = 2013 (thích hợp)
Vậy x = 2013 hoặc x = 2014
Đặt \(x-2003=t\)
Ta có: \(\sqrt{t^{10}}+\sqrt{\left(1-t\right)^{14}}=1\Leftrightarrow\left|t\right|^5+\left|1-t\right|^7=1\text{(*)}\)
\(\left(\text{*}\right)\Rightarrow\left|t\right|;\left|1-t\right|\le1\)
\(+t<0\) thì \(1-t>1\text{ (loại)}\)
\(+t=0\) thì \(\left(\text{*}\right)\) thỏa
\(+0<\)\(t<1\) thì \(\left(\text{*}\right)\Leftrightarrow t^5+\left(1-t\right)^7=1\)
Do \(0<\)\(t;1-t<1\)với 0 < t < 1 nên \(t^5<\)\(t;\left(1-t\right)^7<\)\(t\)
Suy ra \(VT<\)\(t+1-t=1=VT\) (loại)
\(+t=1\) thì \(\left(\text{*}\right)\) thỏa.
\(+t>1\text{ thì }\left|t\right|>1\text{ (loại)}\)
Vậy t = 0 hoặc t = 1
<=> x = .....
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
\(\left(x+\sqrt{x^2+\sqrt{2013}}\right)\left(x-\sqrt{x^2+\sqrt{2013}}\right)=x^2-x^2-\sqrt{2013}=-\sqrt{2013}\) (1)
Theo đề bài và (1) => dpcm
b) theo a có \(y+\sqrt{y^2+\sqrt{2013}}=-x+\sqrt{x^2+\sqrt{2013}}\)(2)
tương tự ta có \(x+\sqrt{x^2+\sqrt{2013}}=-y+\sqrt{y^2+\sqrt{2013}}\)(3)
Cộng 2 vế (2) với (3) => x+y = -x -y
hay 2(x+y) =0 =>S= x+y =0
B> \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(\left(x-\sqrt{x^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2013}=-x+\sqrt{x^2+2013}\)
Chứng minh tương tự: \(x+\sqrt{x^2+2013}=-y+\sqrt{y^2+2013}\)
cộng vế theo vế ta được: \(x+y=-x-y\)
\(\Leftrightarrow x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2013}=-y^{2013}\)
\(\Leftrightarrow x^{2013}+y^{2013}=0\)
a,Ta có x =...
x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3+1}-1}\right)}{\left(\sqrt{\sqrt{3}+1}\right)\left(\sqrt{\sqrt{3}-1}\right)}\)
x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)
x = \(\frac{\sqrt{3}.2}{\sqrt{3}}\)
x = 2
sau đó thay x=2 vào A nhé.
A=2014 !!!
Điều kiện \(x,y,z\ge\frac{1}{4}\)
Cộng các phương trình trong hệ được :
\(2\left(x+y+z\right)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
\(\Leftrightarrow4\left(x+y+z\right)=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)
\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{cases}}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)
Từ đó thay vào yêu cầu đề bài để tính.
\(\left(\sqrt{2014}-\sqrt{2013}\right).\left(\sqrt{2014}+\sqrt{2013}\right)\)
=> \(\sqrt{2014^2}-\sqrt{2013^2}\)
=> \(2014-2013\)
\(=1\)
Vậy ..............
\(\left(\sqrt{2014}-\sqrt{2013}\right).\left(\sqrt{2014}+\sqrt{2013}\right)=1\)
\(VT=\left(\sqrt{2014}-\sqrt{2013}\right).\left(\sqrt{2014}+\sqrt{2013}\right)\)
\(=\sqrt{2014^2}-\sqrt{2013^2}\)
\(=2014-2013\)
\(=1=VP\left(dpcm\right)\)
Vậy....