Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^6+5^5+5^4+5^3+5^2+5+1\)
\(=19531\)\(⋮̸\) \(126\)
Vậy \(5^6+5^5+5^4+5^3+5^2+5+1\) không chia hết cho \(126\)
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{15}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(\frac{1}{2}\left(5^{32}+1\right)=\frac{5^{32}+1}{2}\)
a)
Ta có
a chia 5 dư 4
=> a=5k+4 ( k là số tự nhiên )
\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)
Vì 25k^2 chia hết cho 5
40k chia hết cho 5
16 chia 5 dư 1
=> đpcm
2) Ta có
\(12=\frac{5^2-1}{2}\)
Thay vào biểu thức ta có
\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)}{2}\)
\(\Rightarrow P=\frac{\left[\left(5^2\right)^2-1^2\right]\left[\left(5^2\right)^2+1^2\right]\left(5^8+1\right)}{2}\)
\(\Rightarrow P=\frac{\left[\left(5^4\right)^2-1^2\right]\left[\left(5^4\right)^2+1^2\right]}{2}\)
\(\Rightarrow P=\frac{5^{16}-1}{2}\)
3)
\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=a^3+b^3+c^2+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Xét các biểu thức :
\(x^3+y^3+z^3=x^3+y^3+\left(-x-y\right)^3=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)\left(-3xy\right)=-3xy.\left(-z\right)=3xyz\)
\(x^2+y^2+z^2=x^2+y^2+\left(-x-y\right)^2=2\left(x^2+y^2+xy\right)\)
Do đó VT có giá trị là \(5.\left(3xyz\right).2\left(x^2+y^2+xy\right)=30xyz\left(x^2+y^2+xy\right)\)
Xét VP:
\(x^5+y^5+z^5=\left(x^5+y^5\right)+\left(-x-y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy.\left[\left(x+y\right)^3-xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+2xy+y^2-xy\right)\)
\(=5xyz\left(x^2+xy+y^2\right)\)
Do đó VP là \(30xyz\left(x^2+y^2+xy\right)\)
Suy ra điều phải chứng minh.
a) \(\frac{7x}{8}-5\left(x-9\right)=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-\frac{40\left(x-9\right)}{8}=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-\frac{40x-360}{8}=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{360-33x}{8}=\frac{20x+1,5}{6}\)
\(\Leftrightarrow2160-198x=160x+12\)
\(\Leftrightarrow358x=2148\)
\(\Leftrightarrow x=6\)
Vậy nghiệm của pt x=6
b) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
\(\Leftrightarrow\frac{10\left(x-1\right)+4}{12}-\frac{21x-3}{12}=\frac{4x+2}{7}-\frac{35}{7}\)
\(\Leftrightarrow\frac{-11x-3}{12}=\frac{4x-33}{7}\)
\(\Leftrightarrow-77x-21=48x-396\)
\(\Leftrightarrow125x=375\)
\(\Leftrightarrow3\)
Vậy nghiệm của pt x=3
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
\( a)\dfrac{{x - 3}}{5} = 6 - \dfrac{{1 - 2x}}{2}\\ \Leftrightarrow 2\left( {x - 3} \right) = 60 - 5\left( {1 - 2x} \right)\\ \Leftrightarrow 2x - 6 = 60 - 5 + 10x\\ \Leftrightarrow 8x = - 61\\ \Leftrightarrow x = - \dfrac{{61}}{8}\\ b)\dfrac{{3x - 2}}{6} - 5 = \dfrac{{3 - 2\left( {x + 7} \right)}}{4}\\ \Leftrightarrow 2\left( {3x - 2} \right) - 60 = 3\left( { - 11 - 2x} \right)\\ \Leftrightarrow 6x - 4 - 60 = - 33 - 6x\\ \Leftrightarrow 12x = 31\\ \Leftrightarrow x = \dfrac{{31}}{{12}} \)
\(a.\frac{x-3}{5}=6-\frac{1-2x}{2}\\\Leftrightarrow \frac{2\left(x-3\right)}{10}=\frac{60}{10}-\frac{5\left(1-2x\right)}{10}\\ \Leftrightarrow2\left(x-3\right)=60-5\left(1-2x\right)\\\Leftrightarrow 2x-6=60-5+10x\\\Leftrightarrow 2x-10x=6+60-5\\\Leftrightarrow -8x=61\\ \Leftrightarrow x=-\frac{61}{8}\)
Vậy nghiệm của phương trình trên là \(-\frac{61}{8}\)
a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)
⇔ 3(x - 3) = 90 - 5(1 - 2x)
⇔ 3x - 9 = 90 - 5 + 10x
⇔ 3x - 10x = 90 - 5 + 9
⇔ -7x = 94
⇔ x = \(\frac{-94}{7}\)
S = { \(\frac{-94}{7}\) }
b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)
⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)
⇔ 6x - 4 - 60 = 9 - 6x - 42
⇔ 6x + 6x = 9 - 42 + 60 + 4
⇔ 12x = 31
⇔ x = \(\frac{31}{12}\)
S = { \(\frac{31}{12}\) }
c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7
⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210
⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210
⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40
⇔ 13x = 150
⇔ x = \(\frac{150}{13}\)
S = { \(\frac{150}{13}\) }
d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)
⇔ 21x - 120(x - 9) = 4(2x + 1,5)
⇔ 21x - 120x + 1080 = 8x + 6
⇔ 21x - 120x - 8x = 6 - 1080
⇔ -107x = -1074
⇔ x = \(\frac{1074}{107}\)
S = { \(\frac{1074}{107}\) }
e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5
⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840
⇔ 140x -140+56 -294x+42= 96x+48 -840
⇔ 140x -294x -96x = 48 -840 -42 -56+140
⇔ -250x = -750
⇔ x = 3
S = { 3 }
f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)
⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x
⇔ 4x+4+18x+9 = 4x+6x+6+7+12x
⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4
⇔ 0x = 0
S = R
Chúc bạn học tốt !
Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html
Mình cảm ơn trước nhaa
ta đặc : \(5^6+5^5+5^4+5^3+5^2+5+1=A\)
vậy ta có : \(A=5^6+5^5+5^4+5^3+5^2+5+1\)
\(\Rightarrow5A=5\left(5^6+5^5+5^4+5^3+5^2+5+1\right)\)
\(5A=5^7+5^6+5^5+5^4+5^3+5^2+5\)
\(\Rightarrow5A-A=4A=\left(5^7+5^6+5^5+5^4+5^3+5^2+5\right)-\left(5^6+5^5+5^4+5^3+5^2+5+1\right)\)
\(4A=5^7-1\Rightarrow A=\dfrac{5^7-1}{4}=19531⋮̸126\)
\(\Rightarrow\) đề sai