\(\left(5^6+5^5+5^4+5^3+5^2+5+1\right)⋮126\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

ta đặc : \(5^6+5^5+5^4+5^3+5^2+5+1=A\)

vậy ta có : \(A=5^6+5^5+5^4+5^3+5^2+5+1\)

\(\Rightarrow5A=5\left(5^6+5^5+5^4+5^3+5^2+5+1\right)\)

\(5A=5^7+5^6+5^5+5^4+5^3+5^2+5\)

\(\Rightarrow5A-A=4A=\left(5^7+5^6+5^5+5^4+5^3+5^2+5\right)-\left(5^6+5^5+5^4+5^3+5^2+5+1\right)\)

\(4A=5^7-1\Rightarrow A=\dfrac{5^7-1}{4}=19531⋮̸126\)

\(\Rightarrow\) đề sai

2 tháng 12 2017

\(5^6+5^5+5^4+5^3+5^2+5+1\)

\(=19531\)\(⋮̸\) \(126\)

Vậy \(5^6+5^5+5^4+5^3+5^2+5+1\) không chia hết cho \(126\)

6 tháng 8 2016

\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{15}+1\right)\)

\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(\frac{1}{2}\left(5^{32}+1\right)=\frac{5^{32}+1}{2}\)

 

6 tháng 8 2016

a)

 Ta có

a chia 5 dư 4

=> a=5k+4 ( k là số tự nhiên )

\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)

Vì 25k^2 chia hết cho 5

    40k chia hết cho 5

    16 chia 5 dư 1

=> đpcm

2) Ta có

\(12=\frac{5^2-1}{2}\)

Thay vào biểu thức ta có

\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)}{2}\)

\(\Rightarrow P=\frac{\left[\left(5^2\right)^2-1^2\right]\left[\left(5^2\right)^2+1^2\right]\left(5^8+1\right)}{2}\)

\(\Rightarrow P=\frac{\left[\left(5^4\right)^2-1^2\right]\left[\left(5^4\right)^2+1^2\right]}{2}\)

\(\Rightarrow P=\frac{5^{16}-1}{2}\)

3)

\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(=a^3+b^3+c^2+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

 

22 tháng 4 2017

a) Ta có: -2 < -1

=> 4.(-2) < 4.(-1) (nhân hai vế với 4)

=> 4.(-2) + 14 < 4.(-1) + 14 (cộng hai vế với 14) (đpcm)

b) Ta có: 2 > -5

=> (-3).2 < (-3).(-5) (nhân hai vế với -3)

=> (-3).2 + 5 < (-3).(-5) + 5 (cộng hai vế với 5) (đpcm)

1 tháng 10 2017

Xét các biểu thức :

\(x^3+y^3+z^3=x^3+y^3+\left(-x-y\right)^3=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)\left(-3xy\right)=-3xy.\left(-z\right)=3xyz\)

\(x^2+y^2+z^2=x^2+y^2+\left(-x-y\right)^2=2\left(x^2+y^2+xy\right)\)

Do đó VT có giá trị là \(5.\left(3xyz\right).2\left(x^2+y^2+xy\right)=30xyz\left(x^2+y^2+xy\right)\)

Xét VP:

\(x^5+y^5+z^5=\left(x^5+y^5\right)+\left(-x-y\right)^5\)

\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=-5xy.\left[\left(x+y\right)^3-xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+2xy+y^2-xy\right)\)

\(=5xyz\left(x^2+xy+y^2\right)\)

Do đó VP là \(30xyz\left(x^2+y^2+xy\right)\)

Suy ra điều phải chứng minh.

13 tháng 2 2020

Giải phương tình nha :v 

13 tháng 2 2020

a) \(\frac{7x}{8}-5\left(x-9\right)=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{7x}{8}-\frac{40\left(x-9\right)}{8}=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{7x}{8}-\frac{40x-360}{8}=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{360-33x}{8}=\frac{20x+1,5}{6}\)

\(\Leftrightarrow2160-198x=160x+12\)

\(\Leftrightarrow358x=2148\)

\(\Leftrightarrow x=6\)

Vậy nghiệm của pt x=6

b)  \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)

\(\Leftrightarrow\frac{10\left(x-1\right)+4}{12}-\frac{21x-3}{12}=\frac{4x+2}{7}-\frac{35}{7}\)

\(\Leftrightarrow\frac{-11x-3}{12}=\frac{4x-33}{7}\)

\(\Leftrightarrow-77x-21=48x-396\)

\(\Leftrightarrow125x=375\)

\(\Leftrightarrow3\)

Vậy nghiệm của pt x=3

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

20 tháng 3 2020

\( a)\dfrac{{x - 3}}{5} = 6 - \dfrac{{1 - 2x}}{2}\\ \Leftrightarrow 2\left( {x - 3} \right) = 60 - 5\left( {1 - 2x} \right)\\ \Leftrightarrow 2x - 6 = 60 - 5 + 10x\\ \Leftrightarrow 8x = - 61\\ \Leftrightarrow x = - \dfrac{{61}}{8}\\ b)\dfrac{{3x - 2}}{6} - 5 = \dfrac{{3 - 2\left( {x + 7} \right)}}{4}\\ \Leftrightarrow 2\left( {3x - 2} \right) - 60 = 3\left( { - 11 - 2x} \right)\\ \Leftrightarrow 6x - 4 - 60 = - 33 - 6x\\ \Leftrightarrow 12x = 31\\ \Leftrightarrow x = \dfrac{{31}}{{12}} \)

20 tháng 3 2020

\(a.\frac{x-3}{5}=6-\frac{1-2x}{2}\\\Leftrightarrow \frac{2\left(x-3\right)}{10}=\frac{60}{10}-\frac{5\left(1-2x\right)}{10}\\ \Leftrightarrow2\left(x-3\right)=60-5\left(1-2x\right)\\\Leftrightarrow 2x-6=60-5+10x\\\Leftrightarrow 2x-10x=6+60-5\\\Leftrightarrow -8x=61\\ \Leftrightarrow x=-\frac{61}{8}\)

Vậy nghiệm của phương trình trên là \(-\frac{61}{8}\)

8 tháng 2 2020

a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)

3(x - 3) = 90 - 5(1 - 2x)

⇔ 3x - 9 = 90 - 5 + 10x

⇔ 3x - 10x = 90 - 5 + 9

⇔ -7x = 94

⇔ x = \(\frac{-94}{7}\)

S = { \(\frac{-94}{7}\) }

b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)

⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)

⇔ 6x - 4 - 60 = 9 - 6x - 42

⇔ 6x + 6x = 9 - 42 + 60 + 4

⇔ 12x = 31

⇔ x = \(\frac{31}{12}\)

S = { \(\frac{31}{12}\) }

c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7

⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210

⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210

⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40

⇔ 13x = 150

⇔ x = \(\frac{150}{13}\)

S = { \(\frac{150}{13}\) }

d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)

⇔ 21x - 120(x - 9) = 4(2x + 1,5)

⇔ 21x - 120x + 1080 = 8x + 6

⇔ 21x - 120x - 8x = 6 - 1080

⇔ -107x = -1074

⇔ x = \(\frac{1074}{107}\)

S = { \(\frac{1074}{107}\) }

e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5

⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840

⇔ 140x -140+56 -294x+42= 96x+48 -840

⇔ 140x -294x -96x = 48 -840 -42 -56+140

⇔ -250x = -750

⇔ x = 3

S = { 3 }

f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)

⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x

⇔ 4x+4+18x+9 = 4x+6x+6+7+12x

⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4

⇔ 0x = 0

S = R

Chúc bạn học tốt !

22 tháng 4 2020

Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html

Mình cảm ơn trước nhaa