\(\left(4^n+6n-1\right)⋮9\) với \(n\in N;n\ge1\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Mệnh đề đúng với \(n=1\)\(4^1+6.1-1=9\).

- Giả sử \(\left(4^k+6k-1\right)⋮9\). Ta chứng minh:

\(\left[4^{k+1}+6\left(k+1\right)-1\right]⋮9\)

Ta có:

\(4^{k+1}+6\left(k+1\right)-1\)

\(=4.4^k+6k+6-1\)

\(=\left(4^k+6k-1\right)+3.4^k+6\)

\(=\left(4^k+6k-1\right)+3\left(4^k+2\right)\)

Đặt \(A=4^k+6k-1\)\(B=3\left(4^k+2\right)\)

Theo giả thiết quy nạp thì \(A⋮9\)

Do \(4:3=1\) (dư 1) \(\Rightarrow4^k:3\)\(1\Rightarrow\left(4^k+2\right)⋮3\Rightarrow B⋮9\)

Lại có \(\left[4^{k+1}+6\left(k+1\right)-1\right]⋮9\)

Vậy mệnh đề đúng với mọi \(n\in N;n\ge1\)

2 tháng 8 2017

Hồng Phúc Nguyễn Phạm Ngân Hà

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2+5n⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=\left(6n^2+30n+n+5\right)-\left(6n^2-3n+10n-5\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10⋮2\)

27 tháng 3 2019

\(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left[\left(n-1\right)+\left(n+2\right)\right]\)

\(=\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)⋮6\rightarrowđpcm\)

19 tháng 10 2018

a,thay n=1 vào thì sẽ bằng 24 ko chia hết cho 10 nên đề sai

b, \(5^n\left(5^2+5^1+1\right)=5^n.31\)

5 tháng 3 2019

\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n\left(9+1\right)-2^{n-1}.2\left(4+1\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\left(ĐPCM\right)\)

a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)

\(\Rightarrow2^n\cdot4,5=288\)

\(\Rightarrow2^n=64\)

\(\Rightarrow n=6\)

b) \(2^m-2^n=1984\)

\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)

\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)

\(\Rightarrow n=6\)

\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)

23 tháng 7 2018

a) \(\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^{n-1}}\)

\(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n:\left(-\dfrac{5}{7}\right)}\)

\(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n.\left(-\dfrac{7}{5}\right)}\)

\(=\dfrac{1}{\left(-\dfrac{7}{5}\right)}\)

\(=1.\left(-\dfrac{5}{7}\right)\)

\(=-\dfrac{5}{7}\)

b) \(\dfrac{\left(-\dfrac{1}{2}\right)^{2n}}{\left(-\dfrac{1}{2}\right)^n}\)

\(=\dfrac{\left(-\dfrac{1}{2}\right)^n.\left(-\dfrac{1}{2}\right)^n}{\left(-\dfrac{1}{2}\right)^n}\)

\(=\left(-\dfrac{1}{2}\right)^n\)

5 tháng 9 2020

             Bài làm :

Ta có :

 \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{\left(n+1\right)!}\)

\(=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{n}{1.2.3...\left(n+1\right)}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{n+1-1}{1.2.3...\left(n+1\right)}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4..n}-\frac{1}{1.2.3.4...\left(n+1\right)}\)

\(=1-\frac{1}{1.2.3.4...\left(n+1\right)}\)

\(\text{Vì : }\frac{1}{1.2.3.4...\left(n+1\right)}>0\Rightarrow1-\frac{1}{1.2.3.4...\left(n+1\right)}< 1\)

=> Điều phải chứng minh

4 tháng 9 2020

Ta có : \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{\left(n+1\right)!}=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{n}{1.2.3...\left(n+1\right)}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{n+1-1}{1.2.3....\left(n+1\right)}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4..n}-\frac{1}{1.2.3.4...\left(n+1\right)}\)

\(=1-\frac{1}{1.2.3.4...\left(n+1\right)}< 1\left(\text{đpcm}\right)\)

6 tháng 4 2017

Vì n-1;n;n+1 là 3 số nguyên liên tiếp .

=>có 1 số chia hết cho 3.

=>(n-1)*n*(n+1) chia hết cho 3.

Vì n lẻ.

=>n-1 và n+1 chẵn.

Mà n-1 và n+1 là 2 số chẵn liên tiếp.

=>có 1 số chia hết cho 2 và 1 số chia hết cho 4.

=>(n-1)*(n+1) chia hết cho 2*4=8.

=>(n-1)*n*(n+1) chia hết cho 8(vì nEZ).

=>(n-1)*n*(n+1) chia hết cho 3 và 8.

Mà (3;8)=1.

=>(n-1)*n*(n+1) chia hết cho 3*8=24(đpcm).

k cho em nha.đây lại toán lớp 6 rùi