Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1 + 5 + 52 + ... + 539
= ( 1 + 5 ) + ( 52 + 53 ) + ... + ( 538 + 539 )
= 6 + 52(1+5) + ... + 538(1+5)
= 6.(52+53+...+538) chia hết cho 6
=> đpcm
b) tương tự
Ghép những số trên thành các cặp từ trái sang phải mỗi cặp 4 số ta được 25 cặp,ta có:
\(B=\left(1+3+3^2+3^3\right)+....+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(B=40+3^4.40+...+3^{96}.40\)(đoạn nay em rút số đấu tiên ra bên trong còn 1 cộng 3 giống cái đầu tiên nha,anh làm tắt)
\(B=40.\left(1+3^4+...+3^{96}\right)\)chia hết cho 40.
Chúc em học tốt^^
B = 1 + 3 + 32 + 33 + ... + 399(có 100 số; 100 chia hết cho 4)
B = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + ( 396 + 397 + 398 + 399)
B = 40 + 34.(1 + 3 + 32 + 33) + ... + 396.(1 + 3 + 32 + 33)
B = 40 + 34.40 + ... + 396.40
B = 40.(1 + 34 + ... + 396) chia hết cho 40 (đpcm)
Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\)
\(=\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+\left(\frac{1}{3}+\frac{1}{96}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)
\(=\frac{99}{1.98}+\frac{99}{2.97}+\frac{99}{3.96}+...+\frac{99}{49.50}\)
\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4....98\)
\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right).2.3.4....98\)chia hết cho 99 (đpcm)
lg
a)C=3+3^2+3^3+...+3^100
=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)
=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)
=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)
=3.40+...+3^96.40
=40.(3+...+3^96) chia hết cho 40
=>C chia hết cho 40
Vậy C chia hết cho 40
phần b làm tương tự
a, sai đề
b,Ta có :
C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100
= (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)
= (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)
=2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)
=2.31+...+2^96.31
=31. (2+...+2^96) chia hết cho 31
=>C chia hết cho 31
Ta có : M= [(1+1/98)+(1/2+1/97)+...+(1/49+1/50)].2.3.4...98
M=(99/1.98+99/2.97+...+99/49.50).2.3.4...98
M=99(1/1.98+1/2.97+...+1/49.50).2.3.4...98
M=99(k1+k2+...+k49/1.2.3.4...97.98).2.3.4...98
M=99(k1+k2+...+k49)
Vậy M chia hết cho 99
1+3+32+...+399
= (1+3+32+33)+(34+35+36+37)+....+(396+397+398+399)
= 1(1+3+32+33)+34(1+3+32+33)+.....+396(1+3+32+33)
= 1.40 + 34.40 +.....+ 396.40
= 40.(1+34+....+396) chia hết cho 40 (đpcm)
40.(.....) chia hết cho 40