Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét vế trái : \(\left(\sqrt{n+1}-\sqrt{n}\right)^2=2n+1-2\sqrt{n}.\sqrt{n+1}\)
Xét vế phải : \(\sqrt{\left(2n+1\right)^2}-\sqrt{\left(2n+1\right)^2-1}=\left|2n+1\right|-\sqrt{\left(2n+1-1\right)\left(2n+1+1\right)}=2n+1-2\sqrt{n}.\sqrt{n+1}\)
=> VT = VP
=> đpcm
Lời giải:
Theo định lý Fermat nhỏ thì \(2^{12}\equiv 1\pmod {13}\) nên ta sẽ xét số dư của \(2^{2n}\) khi chia cho \(12\)
Gọi số dư của \(2^{2n}\) khi chia \(12\) là \(x\) với \(x=\overline {0,11}\)
Ta có \(2^{2n}-x\vdots 12\Leftrightarrow \left\{\begin{matrix} 2^{2n}-x\vdots 4\\ 2^{2n}-x\vdots 3\end{matrix}\right.\)
Vì \(2^{2n}\vdots 4\) với mọi $n$ nguyên dương nên \(2^{2n}-x\vdots 4\Leftrightarrow x\vdots 4\) $(1)$
\(2^{2n}\equiv 1\pmod 3\Rightarrow 2^{2n}-x\vdots 3\Leftrightarrow 1-x\vdots 3\Leftrightarrow x\equiv 1\pmod 3\) $(2)$
Từ \((1),(2)\Rightarrow x=4\)
Do đó \(2^{2n}\equiv 4\pmod {12}\Rightarrow 2^{2^{2n}}+10=2^{12k+4}+10\equiv 2^4+10\equiv 0\pmod {13}\)
Do đó ta có đpcm
Chỉnh sửa 1 chút: \(n\in\mathbb{N}^*\)mới đúng chứ không phải \(n\in\mathbb{N}\)
Ta có :
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left|n+1\right|+\left|n\right|=\frac{\left[\left|n+1\right|+\left|n\right|\right]\left[\left|n+1\right|-\left|n\right|\right]}{\left|n+1\right|-\left|n\right|}\)
\(=\frac{\left|n+1\right|^2-\left|n\right|^2}{\left|n+1\right|-\left|n\right|}=\frac{\left(n+1\right)^2-n^2}{\left(n+1\right)-n}=\left(n+1\right)^2-n^2\)(đpcm)
Xét vế trái : \(\left(\sqrt{n+1}-\sqrt{n}\right)^2=2n+1-2\sqrt{n}.\sqrt{n+1}\)
Xét vế phải : \(\sqrt{\left(2n+1\right)^2}-\sqrt{\left(2n+1\right)^2-1}=\left|2n+1\right|-\sqrt{\left(2n+1-1\right)\left(2n+1+1\right)}\)
\(=2n+1-\sqrt{2n.2\left(n+1\right)}=2n+1-2\sqrt{n}.\sqrt{n+1}\)
=> VT = VP => đpcm
Lời giải:
Ta thấy \((2n+1)^2=4n^2+4n+1> 4n^2+4n\)
\(\Leftrightarrow (2n+1)^2> 2n(2n+2)\) \(\Leftrightarrow \frac{1}{(2n+1)^2}\leq \frac{1}{2n(2n+2)}\)
Do đó:
\(\left\{\begin{matrix} \frac{1}{3^2}< \frac{1}{2.4}\\ \frac{1}{5^2}< \frac{1}{4.6}\\ .......\\ \frac{1}{(2n+1)^2}< \frac{1}{2n(2n+2)}\end{matrix}\right.\)
\(\Rightarrow \frac{1}{9}+\frac{1}{25}+....+\frac{1}{(2n+1)^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n(2n+2)}=M\) (1)
\(2M=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{2n(2n+2)}\)
\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+....+\frac{2n+2-2n}{2n(2n+2)}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\)
\(=\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\)
\(\Rightarrow M< \frac{1}{4} (2)\)
Từ (1),(2) suy ra \(\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2n+1)^2}< \frac{1}{4}\) (đpcm)
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
11n+2 + 122n+1
= 11n.112 + 122n.12
= 11n.121 + 144n.12
= 11n.121 + 12.11n + 144n.12 - 12.11n
= 11n.(121 + 12) + 12.(144n - 11n)
= 11n.133 + 12.(144 - 11).(144n-1 + 144n-2.11 + ... + 144.11n-2 + 11n-1)
= 11n.133 + 12.133.k chia hết cho 133 (đpcm)