\(n^2+2002\) là số chính phương.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

dùng phương pháp phản chứng nhé

đặt \(n^2+2002=a^2\)

=> \(a^2-n^2=2002\)

<=> (a+n)(a-n) =2002

do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cùng tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 (vô lý)

=> đpcm

15 tháng 2 2019

\(n^2+2002=k^2\Leftrightarrow2002=k^2-n^2=\left(k-n\right).\left(k+n\right)\)

ta thấy k-n và k+n cùng tính chẵn lẻ 

Mà 2002 chẵn => (k-n).(k+n) đều chẵn khi đó (k-n).(k+n) chia hết cho 2  

mà 2002=2.7.11.13

Vậy không tồn tại n thuộc N để n2+2002 là SCP

p/s: có cách ngắn hơn làm với ạ :) + t ko rõ đúng hay sai =,='

15 tháng 2 2019

tối mai duyệt nhé.h đi ngủ đã:))

28 tháng 3 2019

đẻ n2+ 2002  là số chính phương 

=> n2+2002= a2 (a lá số tự nhiên khác 0)

=>a2-n2=2002

=> (a-n)(a+n)=2002

do 2002 chia hết cho 2 suy ra  a-n hoặc a+n chia hết cho 2 mà a-n-(a+n)=-2n chia hết cho 2

=>a-n và a+n cùng tính chẵn lẻ => a-n,a+n chia hết cho 2

=> (a-n)(a+ n) chia hết cho 4 mà 2002 chia hết cho 4

 điều này là vô lí

hok tốt

kt

28 tháng 3 2019

https://olm.vn/hoi-dap/detail/70760530637.html

30 tháng 11 2018

n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9

Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3

Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.

Do đó: n2 + 2002 không là số chính phương với mọi n là STN.

28 tháng 8 2016

Theo đề bài, lập biểu thức sau:

\(ab+4=x^2\)

\(\Leftrightarrow x^2-4=ab\)

\(\Leftrightarrow x^2-2^2=ab\)

\(\Rightarrow\left(x+2\right)\left(x-2\right)=ab\) (luôn đúng với mọi ab)

=> đpcm

28 tháng 8 2016

Đặt \(ab+4=m^2\left(m\in N\right)\)

\(\Rightarrow ab=m^2-4=\left(m-2\right)\left(m+2\right)\)

\(\Rightarrow b=\frac{\left(m-2\right)\left(m+2\right)}{a}\)

Ta có : \(m=a+2\Rightarrow m-2=a\)

\(\Rightarrow b=\frac{a\left(a+4\right)}{a}=a+4\)

Vậy với mọi số tự nhiên \(a\) luôn tồn tại \(b=a+4\) để \(ab+4\) là số chính phương .

a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)

\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)

\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)

\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)

b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)

\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm

15 tháng 4 2016

Giả sử : n^2 + 2006 là số chính phương 

=> n2 + 2006 = k2 ( k thuộc N )

=> 2006 = k2 - n2 = ( k - n ).( k + n )

Ta có : 2006 = 2 x 1003 

=> k - n = 2 => n = 2 + k

     k + n = 1003

=> k + 2 + k = 1003

=> 2k = 1001 => k = 1001/2 ( loại )

Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương

16 tháng 4 2016

kudo shinichi làm sai đề rồi phải như thế này nè:

 để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

k cho tớ nha

ai k mh mh k lại

Giả sử \(n^2+2002\) là một số chính phương, suy ra \(n^2+2002=m^2\) với \(n,m\in Z\)

\(\Leftrightarrow\left(m+n\right)\left(m-n\right)=2002,\) suy ra m + n và m - n là 2 số chẵn

\(\Rightarrow\left(m+n\right)\left(m-n\right)⋮4\)\(2004⋮̸4\) vô lí

Vậy không tồn tại số nguyên n để \(n^2+2002\) là 1 số chính phương

9 tháng 4 2018

câu này hay đấy bạn:

n2+2002 là số chính phương thì n2+2002=a2(a là số tự nhiên khác 0)

⇒a2−n2=2002⇒(a−n)(a+n)=2002

Do 2002⋮2⇒(a−n)(a+n)⋮2hay a−n⋮2hoặc a+n⋮2hoặc a-n và a+n đều⋮2

mà a-n-(a+n)=-2n ⋮2⇒a-n và a+n cùng chẵn hoặc lẻ ⇒ a-n; a+n đều ⋮2⇒(a−n)(a+n)⋮4

Mà 2002 ko chia hết cho 4