![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge\frac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\frac{1}{3}\left(\frac{1}{3}\left(a+b+c\right)^2\right)^2=\frac{1}{27}\left(a+b+c\right)^4\)
Dấu "=" xảy ra khi \(a=b=c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+2.a.\frac{b}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\text{ luôn đúng với mọi a,b}\)
\(\text{Vậy }a^4+b^4\ge a^3b+3ab^3\text{ với mọi a,b; dấu "=" xảy ra khi x=y}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
C1
Giả sử căn 7 là số hữu tỉ Vậy căn 7 bằng a/b. Suy ra 7 bằng a bình / b bình. Suy ra a bình bằng 7b bình Suy ra a chia hết cho 7 Gọi a bằng 7k suy ra a bình bằng 7b bình Suy ra (2k) bình bằng 2b bình suy ra 4k bình bằng 2b bình suy ra 2k bình bằng b bình Suy ra ƯCLN(a,b)=2 Trái với đề bài =>căn 7 là số vô tỉ
![](https://rs.olm.vn/images/avt/0.png?1311)
1.TA CO A^2 + B^2/4 >=AB ... 4- (A^2+1/A^2)>=AB . VOI A^2>=0 TACO A^2 +1/A^2 >=2 ... - (A^2+1/A^2)<=-2 SUYRA AB<= - (A^2+1/A^2)+4 <=-2+4 HAY AB<=2 . MAX AB=2 KHI A=1 , B=2A=2 2.XY-X-Y=0...XY-X-Y+1=1...X(Y-1)-(Y-1)=1...(X-1)(Y-1)=1. Vi X,Y NGUYEN NEN X-1 , Y-1 NGUYEN ...(X-1)(Y-1)=1.1= -1 .-1. VS X-1=1,Y-1=1 SUYRA X=Y=2...VS X-1=-1,Y-1=-1 SUYRA X=Y=0
1) \(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2\ge0\)
hay \(ab\le2\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\a=\frac{b}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
2)
\(PT\Leftrightarrow\left(1-x\right)\left(y-1\right)=-1=1.\left(-1\right)=\left(-1\right).1\)
Xét các Th
3) bunyakovsky
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
Giả sử \(\sqrt{7}\) không phải số vô tỉ mà là số hữu tỉ
\(\sqrt{7}=\frac{a}{b}\) ( a;b = 1 ) ( vì căn 7 là số hữu tỉ nên có thể viết dưới dạng a/b )
\(\Rightarrow\frac{a^2}{b^2}=7\)
\(\Rightarrow a^2=7\times b^2\)
Vì a và b là 2 số nguyên tố cùng nhau nên để \(a^2=7\times b^2\) thì \(a^2⋮7\)
Mà 7 là số nguyên tố \(\Rightarrow a⋮7\)\(\Rightarrow a\) có dạng \(a=7k\)
Lại có :\(a^2=7b^2\) \(\Rightarrow49k^2=7b^2\Rightarrow7k^2=b^2\)
Tương tự như trên thì \(b⋮7\)
Do a và b đều chia hết cho 7 nên trái với giả thiết ta đặt ra
\(\Rightarrow\sqrt{7}\) là số vô tỉ (đpcm)
trả lời:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow2ad.bc-2ad.bc=0\)
\(\Leftrightarrow0=0\left(Đ\right)\)
Vậy đẳng thức đã cho là đúng.