K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

a)    \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (vì  a+b+c = 1)

\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

C/m  BĐT phụ:   \(\frac{x}{y}+\frac{y}{x}\ge2\)   với  x,y dương

             \(\Leftrightarrow\)\(x^2+y^2\ge2xy\)

            \(\Leftrightarrow\) \(x^2-2xy+y^2\ge0\)

            \(\Leftrightarrow\) \(\left(x-y\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra   \(\Leftrightarrow\)\(x=y\)

Áp dụng BĐT trên ta có:   \(\frac{a}{b}+\frac{b}{a}\ge2;\) \(\frac{a}{c}+\frac{c}{a}\ge2;\) \(\frac{b}{c}+\frac{c}{b}\ge2\)

\(\Rightarrow\)\(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Vậy    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

28 tháng 6 2020

Hỏi đáp Toán

16 tháng 3 2018

ab-a-b-1=(a-1)(b-1)

bc-b-c-1=(b-1)(c-1)

ca-a-c-1=(c-1)(a-1)

nhân lại ta được (a-1)^2(b-1)^2(c-1)^2

do đó suy ra đầu bài

9 tháng 4 2017

ta có ab-a-b+1=a(b-1)-(b-1)=(a-1)(b-1) (1)

tương tự bc-b-c+1=(b-1)(c-1) (2)  ; ca-c-a+1=(c-1)(a-1) (3)

từ (1),(2),(3) suy ra (ab-a-b+1)(bc-b-c+1)(ca-c-a+1)=(a-1)(b-1)(b-1)(c-1)(c-1)(a-1)=\(^{\left(a-1\right)^2}\)\(^{\left(b-1\right)^2}\)\(^{\left(c-1\right)^2}\)>=0 với mọi a;b;c

suy ra các biểu thức đã cho ko thể cùng có giá trị âm 

  mk trả lời có giif sai sót thì xin bỏ quá cho nha link cho mk nhé thanks

21 tháng 10 2016

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

22 tháng 7 2019

#)Giải :

a) Để C/m a và b là hai số đối nhau => a + b = 0

Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)

\(\Leftrightarrow a^2+2ab+b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)

\(\Rightarrowđpcm\)

9 tháng 11 2023

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

NV
2 tháng 6 2020

\(\sum\frac{a\left(a+c-2b\right)}{1+ab}\ge0\Leftrightarrow\sum\frac{a\left(3-3b\right)}{1+ab}\ge0\Leftrightarrow\sum\frac{a\left(1-b\right)}{1+ab}\ge0\)

Ta có:

\(VT=\sum\frac{a\left(1-b\right)}{1+ab}=\sum\left(a-\frac{ab\left(1+a\right)}{1+ab}\right)\ge\sum\left(a-\frac{ab\left(1+a\right)}{2\sqrt{ab}}\right)\)

\(VT\ge\sum\left(a-\frac{1}{4}\left(2.1.\sqrt{ab}+2.a.\sqrt{ab}\right)\right)\ge\sum\left(a-\frac{1}{4}\left(1+ab+a^2+ab\right)\right)\)

\(\Rightarrow VT\ge3-\frac{3}{4}-\frac{1}{4}\left(a+b+c\right)^2=0\)

Dấu "=" xảy ra khi \(a=b=c=1\)