\(\frac{n\left(n+1\right)}{2}\) và \(2n+1\) nguy...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

Gọi d là ƯCLN( \(\frac{n\left(n+1\right)}{2}\), 2n+1) ( d thuộc N*)

Khi đó \(\frac{n\left(n+1\right)}{2}\) chia hết cho d và  2n+1 chia hết cho d

<=> n(n+1) chia hết cho d và  2n+1 chia hết cho d

<=> n+ n chia hết cho d và n(2n+1) chia hết cho d

<=> n2+n chia hết cho d, 2n2+n chia hết cho d

=> (2n2+n) - (n2+n) chia hết cho d

=> n2 chia hết cho d

Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d 

=> n chia hết cho d

=> 2n chia hết cho d

Mà 2n+1 chia hết cho d

=> (2n+1)-2n chia hết cho d

=> 1 chia hết cho d

Mà d \(\in\) N => d=1

Vậy \(\frac{n\left(n+1\right)}{2}\) và 2n+1 nguyên tố cùng nhau với mọi n \(\in\) N

16 tháng 6 2016

Gọi d = ƯCLN( n(n+1)/2, 2n+1) ( d thuộc N*)

=> n(n+1)/2 chia hết cho d, 2n+1 chia hết cho d

=> n(n+1) chia hết cho d, 2n+1 chia hết cho d

=> n2+n chia hết cho d, n(2n+1) chia hết cho d

=> n2+n chia hết cho d, 2n2+n chia hết cho d

=> (2n2+n) - (n2+n) chia hết cho d

=> 2n2+n-n2-n chia hết cho d

=> n2 chia hết cho d

Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d 

=> n chia hết cho d

=> 2n chia hết cho d

Mà 2n+1 chia hết cho d => (2n+1)-2n chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N => d=1

=> ƯCLN( n(n+1)/2, 2n+1)=1

Chứng tỏ n(n+1)/2 và 2n+1 nguyên tố cùng nhau với mọi n thuộc N

10 tháng 11 2016

Gọi \(ƯCLN\left(2n+1,6n+5\right)\) là a

Theo đề ra , ta có :

\(\begin{cases}2n+1⋮a\\6n+5⋮a\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}6n+3⋮a\\6n+5⋮a\end{cases}\)

\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮a\)

\(\Rightarrow\left(6n+5-6n-3\right)⋮a\)

\(\Rightarrow2⋮a\) Vì : 2n + 1 và 6n + 5 là số lẻ \(\RightarrowƯCLN\left(2n+1,6n+5\right)=1\)

Vì : có ƯCLN = 1 => 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau

Vậy ...

10 tháng 11 2016

hahahehe

 

17 tháng 2 2017

100 + 100 + 100

Các bạn trả lời nhanh nhất mình k cho mà bạn nào trả lời nhanh nhất thì các bạn k cho bạn đấy mình sẽ k lại cho

17 tháng 2 2017

trần khánh lâm ! = 300

kick mk nhé !

24 tháng 4 2016

Gọi d thuộc ƯC(\(\frac{n\left(n+1\right)}{2}\),2n+1) thì n(n+1) chia hết cho d và 2n+1 chia hết cho d.

=>n(2n+1) - n(n+1)chia hết cho d

<=>2\(n^2\)+n - \(n^2\)-n chia hết cho d

<=> \(n^2\)chia hết cho d

Từ n(n+1) chia hết cho d và \(n^2\) chia hết cho d => n chia hết cho d

Ta lại có 2n+1 chia hết cho d

=> 1 chia hết cho d => d=1

Vậy 2 số đó là 2 số nguyen tố

4 tháng 12 2017

mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu