\(\frac{a+b}{a^2+b^2}\le\frac{2}{a+b}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

NV
20 tháng 6 2020

\(a^2+b^2+c^2\le abc\Leftrightarrow\frac{a^2+b^2+c^2}{abc}\le1\)

Đặt vế trái biểu thức là P

\(P=\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{a}{2\sqrt{a^2bc}}+\frac{b}{2\sqrt{b^2ac}}+\frac{c}{2\sqrt{c^2ab}}\)

\(P\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(P\le\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\le\frac{1}{2}\left(\frac{a^2+b^2+c^2}{abc}\right)\le\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

4 tháng 8 2016

minh biet lam cau b)

A B C D N M

ke phan giac AD  , BM vuong goc AD , CN vuong goc AD

sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)

ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)

=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)

dau = xay ra  <=> AD vuong goc BC  => AD la duong phan giac ,la  duong cao  => tam giac ABC can tai  A => AB=AC => b=c

tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)

=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)

ap dung cosi cjo 2 so duong   b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)

=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)

\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)

dau = xay ra <=> a=b=c hay tam giac ABC deu

5 tháng 8 2016

nhìn bài toán kho hiểu nhỉ ???

14 tháng 2 2017

Ta có \(a+b+c\le\sqrt{3}\)

\(\Rightarrow\left(a+b+c\right)^2\le3\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\le1\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ac\)

\(\Rightarrow1\ge ab+bc+ac\)

\(\Rightarrow\left\{\begin{matrix}1+a^2\ge a^2+ab+bc+ac\\1+b^2\ge b^2+ab+bc+ac\\1+c^2\ge c^2+ab+bc+ac\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\sqrt{1+a^2}\ge\sqrt{a^2+ab+bc+ca}\\\sqrt{1+b^2}\ge\sqrt{b^2+ab+bc+ca}\\\sqrt{1+c^2}\ge\sqrt{c^2+ab+bc+ca}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{1+a^2}}\le\frac{a}{\sqrt{a^2+ab+bc+ac}}\\\frac{b}{\sqrt{1+b^2}}\le\frac{b}{\sqrt{b^2+ab+bc+ac}}\\\frac{c}{\sqrt{1+c^2}}\le\frac{c}{\sqrt{c^2+ab+bc+ac}}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{a\left(a+b\right)+c\left(a+b\right)}}+\frac{b}{\sqrt{b\left(b+a\right)+c\left(a+b\right)}}+\frac{c}{\sqrt{c\left(c+a\right)+b\left(c+a\right)}}\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Xét \(\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng bất đẳng thức Cauchy ngược dấu cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\sqrt{\left(a+b\right)\left(a+c\right)}\ge\frac{2a+b+c}{2}\\\sqrt{\left(a+b\right)\left(b+c\right)}\ge\frac{a+2b+c}{2}\\\sqrt{\left(c+a\right)\left(c+b\right)}\ge\frac{a+b+2c}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{2a}{2b+b+c}\\\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{2b}{a+2b+c}\\\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{2c}{a+b+2c}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\)

Chứng minh rằng: \(2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\le\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)

Áp dụng bất đẳng thức \(\frac{1}{a+b}\ge\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\frac{a}{2a+b+c}=\frac{a}{a+c+a+b}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{b}{a+2b+c}=\frac{b}{a+b+b+c}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

\(\Rightarrow\frac{c}{a+b+2c}=\frac{c}{a+c+b+c}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{b}{4\left(a+b\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{b}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\left(đpcm\right)\)

\(\Rightarrow2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\le\frac{3}{2}\)

\(\Rightarrow\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{3}{2}\)

Vậy \(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{3}{2}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
14 tháng 2 2017

Lời giải khác:

Áp dụng bđt Cauchy-Schwarz:

\((a^2+1)(1+3)\geq (a+\sqrt{3})^2\)\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{2a}{a+\sqrt{3}}\)

Thực hiện tương tự với các phân thức còn lại:

\(\Rightarrow \frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\leq 2\left ( \frac{a}{a+\sqrt{3}}+\frac{b}{b+\sqrt{3}}+\frac{c}{c+\sqrt{3}} \right )=2A\) $(1)$

Lại có:

\(\)\(A=\left ( 1-\frac{\sqrt{3}}{a+\sqrt{3}} \right )+\left ( 1-\frac{\sqrt{3}}{b+\sqrt{3}} \right )+\left ( 1-\frac{\sqrt{3}}{c+\sqrt{3}} \right )=3-\sqrt{3}\left ( \frac{1}{a+\sqrt{3}}+\frac{1}{b+\sqrt{3}}+\frac{1}{c+\sqrt{3}} \right )\)

Cauchy-Schwarz kết hợp với \(a+b+c\leq \sqrt{3}\):

\(A\leq 3-\frac{9\sqrt{3}}{a+b+c+3\sqrt{3}}\leq 3-\frac{9\sqrt{3}}{4\sqrt{3}}=\frac{3}{4}\) $(2)$

Từ \((1),(2)\Rightarrow \text{VT}\leq 2A\leq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

8 tháng 12 2016

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=2+\frac{a}{b}+\frac{b}{a}\) (1)

Không mất tính tổng quát, ta giả sử \(1\le a\le b\le2\). Ta có \(\frac{a}{b}\le1\)\(2\ge b\) , \(a\ge1\) \(\Rightarrow2a\ge b\Rightarrow\frac{a}{b}\ge\frac{1}{2}\) \(\Rightarrow\frac{1}{2}\le\frac{a}{b}\le1< 2\)

Ta có : \(\left(2-\frac{a}{b}\right)\left(\frac{1}{2}-\frac{a}{b}\right)\le0\Rightarrow1-\frac{2a}{b}-\frac{a}{2b}+\frac{a^2}{b^2}\le0\)

\(\Rightarrow1+\frac{a^2}{b^2}\le\frac{5}{2}.\frac{a}{b}\)\(\Rightarrow\frac{a}{b}+\frac{b}{a}\le\frac{5}{2}\) (2) (chia hai vế cho \(\frac{a}{b}\) ) 

Từ (1) và (2) ta suy ra \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\le2+\frac{5}{2}=\frac{9}{2}\)

20 tháng 11 2017

a + b a 1 + b 1 = 2 + b a + a b (1) Không mất tính tổng quát, ta giả sử 1 ≤ a ≤ b ≤ 2. Ta có b a ≤ 1; 2 ≥ b , a ≥ 1 ⇒2a ≥ b⇒ b a ≥ 2 1 ⇒ 2 1 ≤ b a ≤ 1 < 2 Ta có : 2 − b a 2 1 − b a ≤ 0⇒1 − b 2a − 2b a + b 2 a 2 ≤ 0 ⇒1 + b 2 a 2 ≤ 2 5 . b a ⇒ b a + a b ≤ 2 5 (2) (chia hai vế cho b a ) Từ (1) và (2) ta suy ra a + b a 1 + b 1 ≤ 2 + 2 5 = 2 9 (

mk nghĩ vậy