Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{n\sqrt{n-1}}=\frac{\sqrt{n-1}}{\left(n-1\right)n}=\sqrt{n-1}.\frac{1}{\left(n-1\right)n}=\sqrt{n-1}\left(\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=\sqrt{n-1}\left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{n}}\right)\)
\(=\left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\left(1+\frac{\sqrt{n-1}}{\sqrt{n}}\right)\)
\(< \left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n}}\right)=2\left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\)
Áp dụng vài bài toán:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}\)
\(< 2\left(1-\frac{1}{\sqrt{2}}\right)+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)+...+2\left(\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2005}}\right)=2-\frac{2}{\sqrt{2005}}< 2\)
Vậy \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}< 2\)
Ta có
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n^2+n}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Từ đó ta có
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\)
\(=1-\frac{1}{\sqrt{2005}}=\frac{\sqrt{2005}-1}{\sqrt{2005}}\)
\(\forall n\inℕ^∗\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) (*)
Thay n=1; n=2; n=3; .....; n=2004 Ta có:
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\)
\(=1-\frac{1}{\sqrt{2005}}\)
Ta có \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
áp dụng vào làm
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow S=\frac{1}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{2004}}{2004}-\frac{\sqrt{2005}}{2005}\)
\(=1-\frac{\sqrt{2005}}{2005}\)