Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)
\(A=49\frac{8}{23}-5\frac{7}{32}+14\frac{8}{23}\)
\(A= \left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}\)
\(A=\left[\left(49-14\right)-\left(\frac{8}{23}-\frac{8}{23}\right)\right]-5\frac{7}{32}\)
\(A=\left[35-0\right]-5\frac{7}{32}\)
\(A=35-5\frac{7}{32}\)
\(A=\frac{953}{32}\)
\(B=71\frac{38}{45}-\left(43\frac{38}{45}-1\frac{17}{57}\right)\)
\(B=71\frac{38}{45}-\frac{36377}{855}\)
\(B=\frac{1670}{57}\)
\(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right):\frac{4}{5}\)
\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]:\frac{4}{5}\)
\(C=\left[\frac{51}{8}:\frac{7}{12}\right]:\frac{4}{5}\)
\(C=\frac{153}{14}:\frac{4}{5}\)
\(C=\frac{765}{56}\)
\(D=\left[\left(\frac{10}{15}-\frac{2}{3}\right):\frac{1}{7}\right]\cdot0,15-\frac{1}{4}\)
\(D=\left[0:\frac{1}{7}\right]\cdot\frac{3}{20}-\frac{1}{4}\)
\(D=0\cdot\frac{3}{20}-\frac{1}{4}\)
\(D=0-\frac{1}{4}\)
\(D=-\frac{1}{4}\)
\(E=\frac{13}{30}+\frac{28}{45}\cdot2\frac{1}{2}-\left[\left(\frac{1}{2}+\frac{1}{3}\right):\frac{53}{90}\right]:\frac{50}{53}\)
\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\left[\frac{5}{6}:\frac{53}{90}\right]:\frac{50}{53}\)
\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\frac{75}{53}:\frac{50}{53}\)
\(E=\frac{13}{30}+\frac{14}{9}-\frac{3}{2}\)
\(\)\(E=\frac{22}{45}\)
CHUC BAN HOC TOT >.<
1,\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\left(7-\frac{1}{6}\right)+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\frac{41}{6}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{41}{14}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{137}{42}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{137}{42}-\frac{1}{2}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{58}{21}\)
\(\left(x-\frac{9}{4}\right)=\frac{5}{2}:\frac{2}{9}\)
\(\left(x-\frac{9}{4}\right)=\frac{45}{4}\)
\(x=\frac{45}{4}+\frac{9}{4}\)
\(x=\frac{27}{2}\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
\(a)\) Đặt \(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\) ta có :
\(A=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2013+2}{2013}\)
\(A=\frac{2014}{2014}-\frac{1}{2014}+\frac{2015}{2015}-\frac{1}{2015}+\frac{2013}{2013}+\frac{2}{2013}\)
\(A=1-\frac{1}{2014}+1-\frac{1}{2015}+1+\frac{2}{2013}\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2014}+\frac{1}{2015}-\frac{2}{2013}\right)\)
\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\left(\frac{1}{2013}+\frac{1}{2013}\right)\right]\)
\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2013}\right]\)
\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]\)
Mà :
\(\frac{1}{2014}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2014}-\frac{1}{2013}< 0\)
\(\frac{1}{2015}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2015}-\frac{1}{2013}< 0\)
Từ (1) và (2) suy ra : \(\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)< 0\) ( cộng theo vế )
\(\Rightarrow\)\(-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>0\)
\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>3\) ( cộng hai vế cho 3 )
\(\Rightarrow\)\(A>3\) ( điều phải chứng minh )
Vậy \(A>3\)
Chúc đệ học tốt ~
c,
\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)
vì \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
.............................
\(\frac{9999}{10000}< \frac{10000}{10001}\)
nên \(C^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10000}{10001}\)
\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow C< \frac{1}{100}\)
bt lm mỗi một câu :v
,mình sửa lại đề:
\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}< 3\)
xóa các chữ số ở tử và mẫu: 2014 và 2014,2015 và 2015
=\(\frac{2013}{2013}\)
=\(1\)
vì \(1>3\) nên \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)
Áp dụng bất đẳng thức Cauchy ta được :
\(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+.....+\left(\frac{1}{5}\right)^{50}\ge50\sqrt[50]{\frac{1}{5}.\left(\frac{1}{5}\right)^2.......\left(\frac{1}{5}\right)^{50}}\left(1\right)\)
\(=50\sqrt[50]{\frac{1}{......}}\)
Thấy điều hiển nhiên : \(\frac{1}{5}.\left(\frac{1}{5}\right)^2.....\left(\frac{1}{5}\right)^{50}< \frac{1}{4}\Rightarrow\frac{1}{.....}< \frac{1}{4}\Rightarrow50\sqrt[50]{\frac{1}{......}}< 4\left(2\right)\)
Từ 1 và 2 => \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+....+\left(\frac{1}{5}\right)^5< \frac{1}{4}\left(đpcm\right)\)