\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}< \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

Giải thích thêm: ta thấy \(\frac{1}{2^2}>\frac{1}{100}\),...,\(\frac{1}{10^2}=\frac{1}{100}\)=> từ \(\frac{1}{2^2}\)đến \(\frac{1}{10^2}\)có 5 cặp

\(\frac{1}{12^2}< \frac{1}{100}\),...,\(\frac{1}{100^2}< \frac{1}{100}\)=> từ \(\frac{1}{12^2}\)đến \(\frac{1}{100^2}\)có 45 cặp

=> 45>5 => tổng < 1/2 (kết hợp với cái kia nx thì bn mới hiểu)

22 tháng 2 2018

Ta  có: \(\frac{1}{2^2}>\frac{1}{100}\)

\(\frac{1}{4^2}>\frac{1}{100}\)

...

\(\frac{1}{100^2}< \frac{1}{100}\)

=> \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

18 tháng 3 2016

a/b= (1+1/6) + (1/2+1/5) + (1/3+1/4)

a/b= 7/6 + 7/10 + 7/12

a/b= 7(1/6+1/10+1/12)

Vì 6x10x12 khong la boi so cua 7 => a/b chia het cho 7 <=> a chia het cho 7 (dpcm)

18 tháng 3 2016

Bạn ơi cho mình hỏi dpcm là gì vậy?

29 tháng 6 2018

Ta có 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)  < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2018}\)\(\frac{2017}{2018}\)< 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 ( dpcm )

29 tháng 6 2018

Ta có:

\(\frac{1}{2^2}\)\(\frac{1}{1.2}\).

\(\frac{1}{3^2}\)\(\frac{1}{2.3}\).

\(\frac{1}{4^2}\)\(\frac{1}{3.4}\).

...

\(\frac{1}{2017^2}\)\(\frac{1}{2016.2017}\).

\(\frac{1}{2018^2}\)\(\frac{1}{2017.2018}\).

Từ trên ta có:

\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+...+ \(\frac{1}{2016.2017}\)\(\frac{1}{2017.2018}\)= 1- \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+...+ \(\frac{1}{2016}\)\(\frac{1}{2017}\)\(\frac{1}{2017}\)\(\frac{1}{2018}\)= 1- \(\frac{1}{2018}\)< 1.

=> \(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)< 1.

=> ĐPCM.

13 tháng 3 2019

hỏi chị google ấy

13 tháng 3 2019

A= \(\frac{1}{31}.\left[\frac{5}{31}\left(9-\frac{1}{2}\right)-\frac{17}{2}\left(4+\frac{1}{5}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)

\(\frac{1}{31}.\left(\frac{5}{31}.\frac{17}{2}-\frac{17}{2}.\frac{21}{5}\right)+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)

=\(\frac{1}{31}.\left[\frac{17}{2}.\left(\frac{5}{31}-\frac{21}{5}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)

=\(\frac{1}{31}.\left[\frac{17}{2}.\left(\frac{-626}{155}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)

=\(\frac{1}{31}.\left(\frac{-5321}{155}\right)+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)

=\(\frac{-5321}{4805}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)

=\(\frac{-5321}{4805}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{30.31}\)

=\(\frac{-5321}{4805}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{30}-\frac{1}{31}\)

=\(\frac{-5321}{4805}+\frac{1}{1}-\frac{1}{31}\)

=\(\frac{-5321}{4805}+\frac{30}{31}\)

=\(\frac{-671}{4805}\)

22 tháng 2 2018

\(A=1+\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2009^2}\)

\(A=1+2^2\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+..+\frac{1}{2009^2}\right)\)

Ta có: \(\frac{1}{3^2}< \frac{1}{1.3};\frac{1}{5^2}< \frac{1}{3.5};\frac{1}{7^2}< \frac{1}{5.7};...;\frac{1}{2009^2}< \frac{1}{2007.2009}\)

\(\Rightarrow A< 1+4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{2007.2009}\right)\)

\(=1+4\cdot\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)

\(=1+2\left(1-\frac{1}{2009}\right)=3-\frac{2}{2009}< 3\)

\(\Rightarrow A< 3\)

10 tháng 3 2016

Ta có:

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(=1-\frac{1}{51}=\frac{50}{51}\)

\(\Rightarrow A=\frac{50}{51}:2=\frac{25}{51}\)

2 tháng 4 2019

c) \(\frac{1}{2}-x=\frac{3}{4}\)

\(\Leftrightarrow\frac{2}{4}-x=\frac{3}{4}\)

\(\Leftrightarrow x=\frac{2}{4}-\frac{3}{4}\)

\(\Leftrightarrow x=\frac{-1}{4}\)

2 tháng 4 2019

b) \(\frac{4}{5}x=\frac{4}{7}\)

\(\Leftrightarrow x=\frac{4}{7}\div\frac{4}{5}\)

\(\Leftrightarrow x=\frac{4}{7}.\frac{5}{4}\)

\(\Leftrightarrow x=\frac{5}{7}\)

14 tháng 3 2017

b1 dễ quá 

14 tháng 3 2017

vậy thì bạn giải đi