Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn xem lời giải của cô Huyền ở đây nhé:
Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath
Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html

A B C D K E F H
a, ABCD là hình thang (gt) => AB // CD (đn)
=> OA/OC = OB/OD (talet) (1)
có AF // BC (gt) => FO/OB = AO/OC (talet) ; có BE // AD (gt) => OE/OA = OB/OD (talet) và (1)
=> FO/OB = OE/OA ; xét tg AOB
=> FE // AB (talet đảo)
b, có DA // BE (Gt) ; ^DAO slt ^OEB ; ^ADO slt ^OBE
=> ^DAO = ^OEB và ^ADO = ^OBE (đl)
xét tg ADO và tg EBO
=> tg ADO đồng dạng với tg EBO (g-g)
=> AO/OE = DO/OB (2)
+ AB // FE (câu a) => AO/OE = AB/EF (talet) ; có AB // DC (Câu a) => DO/OB = CD/AB (talet) và (2)
=> AB/EF = CD/AB
=> AB^2 = EF.CD
c, kẻ AH _|_ BD ; CK _|_ BD
có S1 = OB.AH/2 ; S2 = OD.CK/2 => S1.S2 = OB.AH.OD.CK/4
CÓ S3 = AH.DO/2 ; S4 = CK.OB/2 => C3.C4 = OB.AH.OD.CK/4
=> S1.S2 = S3.S4

Em tham khảo nha.
Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

đề bài: cho hình thanh ABCD (AB//CD). Gọi I là giao điểm của 2 đg chéo AC và BD. Vẽ qua I đường thẳng song song với AB và BC, cắt AD, BC lần lượt tại E,F. chứng minh:
....
bn tự kẻ hình nha :)
a) Xét tg ACD, có: EI // DC
\(\Rightarrow\frac{EI}{DC}=\frac{AI}{AC}\)(1)
Xét tg BCD, có: FI // DC
\(\Rightarrow\frac{FI}{DC}=\frac{IB}{BD}\)(2)
Xét tg ABI, có: AB // CD
\(\Rightarrow\frac{AI}{AC}=\frac{IB}{BD}\) (3)
Từ (1);(2);(3) \(\Rightarrow\frac{IE}{DC}=\frac{IF}{DC}\Rightarrow IE=IF\)
b) Xét tg ACD, EI // DC
=> EI/DC = AE/ AD (1)
Xét tg ADB, EI // AB
=> EI/AB = DE/AD (2)
Từ (1);(2) => \(\frac{EI}{DC}+\frac{EI}{AB}=\frac{AE}{AD}+\frac{DE}{AD}=1\)
\(\Rightarrow EI.\left(\frac{1}{DC}+\frac{1}{AB}\right)=1\Rightarrow\frac{1}{EI}=\frac{1}{DC}+\frac{1}{AB}\)
cmtt, t/có: \(\frac{1}{FI}=\frac{1}{DC}+\frac{1}{AB}\)
\(\Rightarrow\frac{1}{EI}=\frac{1}{FI}=\frac{1+1}{EI+FI}=\frac{2}{EF}=\frac{1}{AB}+\frac{1}{CD}\)

A B C D O F E
a) Do AF//BC nên áp dụng hệ quả định lý Talet ta có: \(\frac{OF}{OB}=\frac{AO}{OC}\)
Tương tự ta có: \(\frac{OE}{OA}=\frac{OB}{OD}\) mà AB // CD nên \(\frac{OB}{OA}=\frac{OA}{OC}\)
Từ đó suy ra \(\frac{OE}{OA}=\frac{OF}{OB}\Rightarrow\) EF // AB.
b) Do AB // EF nên \(\frac{EF}{AB}=\frac{OF}{OB}=\frac{OA}{OC}=\frac{AB}{CD}\Rightarrow\frac{EF}{AB}=\frac{AB}{CD}\Rightarrow AB^2=EF.CD\)
c) Ta thấy tam giác OAB và OBC chung chiều cao hạ từ đỉnh B nên \(\frac{S_{OAB}}{S_{OBC}}=\frac{OA}{OC}\Rightarrow\frac{S_1}{S_4}=\frac{OA}{OC}\)
Tam giác OAD và ODC chung chiều cao hạ từ đỉnh D nên \(\frac{S_{OAD}}{S_{ODC}}=\frac{OA}{OC}\Rightarrow\frac{S_3}{S_2}=\frac{OA}{OC}\)
Vậy thì \(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\left(đpcm\right)\)
ABCDOFE
a) Do AF//BC nên áp dụng hệ quả định lý Talet ta có: OFOB =AOOC
Tương tự ta có: OEOA =OBOD mà AB // CD nên OBOA =OAOC
Từ đó suy ra OEOA =OFOB ⇒ EF // AB.
b) Do AB // EF nên EFAB =OFOB =OAOC =ABCD ⇒EFAB =ABCD ⇒AB2=EF.CD
c) Ta thấy tam giác OAB và OBC chung chiều cao hạ từ đỉnh B nên SOABSOBC =OAOC ⇒S1S4 =OAOC
Tam giác OAD và ODC chung chiều cao hạ từ đỉnh D nên SOADSODC =OAOC ⇒S3S2 =OAOC
Vậy thì S1S4 =S3S2 ⇒S1.S2=S3.S4(đpcm)

cách 2, câu b/
Gọi giao của AC và BD là I, chứng minh được DI= CI
mà ED =CF
=> IE= IF
mặt khác, tam giác IEF và tam giác IDC cùng cân tại I nên EF // CD
cách 1, câu b/
Gọi N là giao EF và BC
dùng đường trung bình và tiên đề Euclid, chứng minh được E,F,N thẳng
>>> đpcm
a: Xét ΔOAD và ΔOEB có
\(\widehat{OAD}=\widehat{OEB}\)(hai góc so le trong, AD//BE)
\(\widehat{AOD}=\widehat{BOE}\)(hai góc đối đỉnh)
Do đó: ΔOAD~ΔOEB
=>\(\dfrac{OA}{OE}=\dfrac{OD}{OB}\)(1)
Xét ΔOAF và ΔOCB có
\(\widehat{OAF}=\widehat{OCB}\)(hai góc so le trong, AF//BC)
\(\widehat{AOF}=\widehat{COB}\)(hai góc đối đỉnh)
Do đó:ΔOAF~ΔOCB
=>\(\dfrac{OA}{OC}=\dfrac{OF}{OB}\)
=>\(\dfrac{OB}{OF}=\dfrac{OC}{OA}\)(2)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB~ΔOCD
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OB}{OF}=\dfrac{OA}{OE}\)
Xét ΔOBA và ΔOFE có
\(\dfrac{OB}{OF}=\dfrac{OA}{OE};\widehat{AOB}=\widehat{EOF}\)
Do đó: ΔOBA~ΔOFE
=>\(\widehat{OBA}=\widehat{OEF}\)
=>BA//EF