Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng không thể biểu diễn số 11 thành tổng các nghịch đảo của bình phương của kk số tự nhiên khác nhau từng đôi một (k∈N,k⩾2k∈N,k⩾2)
GIẢI :
Xét 2 trường hợp :
+ Nếu trong k số tự nhiên đó có số 1 thì dĩ nhiên tổng đó lớn hơn 11^2=1
+ Nếu trong k số tự nhiên đó không có số 1 :
[tex]\frac{1}{n^2}< \frac{1}{(n-1).n}[/tex] |
[tex]\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1).n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1[/tex] |
Vậy dù tổng ở vế trái có bao nhiêu số hạng thì nó vẫn nhỏ hơn 11.
Trong cả 2rường hợp, tổng các nghịch đảo của bình phương của k số tự nhiên khác nhau từng đôi một luôn luôn khác 1 (lớn hơn hoặc nhỏ hơn 1) ⇒⇒đpcm.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
a, góc BAD = góc CAE = 90
góc DAB + góc BAC = góc DAC
góc CAE + góc BAC = góc BAE
=> góc DAC = góc BAE
xét tam giác DAC và tam giác BAE có : AD = AB (gt)
AE = AC (gt)
=> tam giác DAC = tam giác BAE (c-g-c)
=> DC = BE (đn)
b, xét tam giác DNA và tam giác ENM có : NM = NA (gt)
DN = NE do N là trđ của DE (gt)
góc DNA = góc ENM (đối đỉnh)
=> tam giác DNA = tam giác ENM (c-g-c)
=> ME = DA (đn)
AD = AB (Gt)
=> AB = ME
a) Xét tam giác vuông ABC tại A có:
\(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-90^o=90^o\)
Mà \(\widehat{B}>45^o\Leftrightarrow\widehat{C}< 90^o-45^o\Rightarrow\widehat{C}< 45^o\)(đpcm)
b) Áp dụng mối quan hệ giữa góc và cạnh trong tam giác, ta thấy:
- Do \(\widehat{C}< 45^o< \widehat{B}\Leftrightarrow AB< AC\)
- Do \(\widehat{A}=90^o\Leftrightarrow\widehat{C}< \widehat{B}< \widehat{A}\Leftrightarrow AB< AC< BC\)
Giả sử đề bài cho là đúng
Vì n2+1>n2-1
=>n2-1 không thể là cạnh huyền.
Giả 2n là cạnh huyền.
Áp dụng định lý trong tam giác vuông ta có:
(n2+1)2+(n2-1)2=(2n)2
=>n4+2.n2+1+n4-2.n2+1=4.n2
=>2.n4+2=4.n2
=>2.(n4+1)=2.2n2
=>n4+1=n2+n2
=>n4-n2=n2-1
=>n2.(n2-1)=(n-1).(n+1)
Vì n2 và n2-1 là 2 số tự nhiên liên tiếp.
mà n-1 và n+1 là hai số cách nhau 2 đơn vị.
=>Vô lí.
Giả sử n2+1 là cạnh huyền.
Áp dụng định lý trong tam giác vuông ta có:
(2n)2+(n2-1)=(n2+1)2
=>(2n)2=(n2+1)2-(n2-1)2
=>4.n2=n4+2.n2+1-n4+2.n2-1
=>4.n2=4.n2
=>Thoả mãn.
Vậy 1 tam giác có các cạnh có thể biểu diễn dưới dạng n2+1;n2-1 và 2.n(trong đó n>1)là tam giác vuông.
đây là toán lớp 7 ak