\(\dfrac{x^2}{y}+\dfrac{y^2}{x}\) lớn hơn hoặc bằng x+y với mọi x,y

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

ta có

\(\dfrac{x^2}{y}+y=\dfrac{x^2+y^2}{y}\ge\dfrac{2xy}{y}=2x\) với mọi x,y

tương tự ta đc

\(\dfrac{y^2}{x}+x\ge2y\) với mọi x,y

cộng vế với vế ta dc

\(\dfrac{y^2}{x}+x+\dfrac{x^2}{y}+y\ge2x+2y\)

<=>\(\dfrac{y^2}{x}+\dfrac{x^2}{y}+x+y\ge2\left(x+y\right)\)

<=>\(\dfrac{y^2}{x}+\dfrac{x^2}{y}\ge x+y\) (đpcm)

16 tháng 10 2017

z đâu ra??? hum

16 tháng 10 2017

14 tháng 5 2018

Mk trả lời cho bn rùi đó

a: Thiếu vế phải rồi bạn

b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2>=4xy\)

\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)

11 tháng 4 2017

Ta có: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)

\(\Leftrightarrow\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+y^2}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{xy}\right)\ge0\)

\(\Leftrightarrow\dfrac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

BĐT cuối đúng vì x.y > 0 => đpcm

10 tháng 1 2018

có vẻ viết nhầm Bước2

24 tháng 12 2017

Hỏi đáp ToánHỏi đáp Toán

24 tháng 6 2017

\(\Leftrightarrow\dfrac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\dfrac{3\left(x-y\right)^2}{xy}\)

\(\Leftrightarrow\dfrac{\left[\left(x-y\right)\left(x+y\right)\right]^2}{x^2y^2}-\dfrac{3\left(x-y\right)^2}{xy}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{\left(x+y\right)^2}{x^2y^2}-\dfrac{3}{xy}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{x^2+y^2-xy}{x^2y^2}\right)\ge0\)( luôn đúng )

24 tháng 6 2017

copy đét biết nhục