\(\dfrac{n+2}{n+1}\) với n ϵ Z và n ≠ -1 là phân số tối giản.Giúp mk với!!!
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2024

Gọi \(d=UCLN\left(n+2,n+1\right)\) , khi đó:

 \(\left\{{}\begin{matrix}d⋮n+2\\d⋮n+1\end{matrix}\right.\)

\(\Rightarrow d⋮\left(n+2\right)-\left(n+1\right)\)

\(d⋮1\)

Vậy phân số \(\dfrac{n+2}{n+1}\) là tối giản vì ước chung lớn nhất cả tử và mẫu số là 1.

31 tháng 10 2016

1.

a) \(A=2+\frac{1}{n-2}\)

\(A\in Z\Rightarrow n-2\in U\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{1;3\right\}\)

b) Gọi \(d=ƯC\left(2n-3;n-2\right)\)

\(\Rightarrow\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\)

\(\Rightarrow\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\)

\(\Rightarrow2n-3-2\left(n-2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy A là phân số tối giản.

2.

- Từ giả thiết ta có \(P=3k+1\) hoặc \(P=3k+2\) ( \(k\in N\)* )

- Nếu \(P=3k+2\) thì \(P+4=3k+6\) là hợp số ( loại )

- Nếu \(P=3k+1\) thì \(P-2014=3k-2013\) chia hết cho 3

Vậy p - 2014 là hợp số

31 tháng 10 2016

Cám ơn mày nha Trân

19 tháng 5 2016

Gọi d là ƯCLN(n+1;n+2)

Ta có n+1\(⋮\)d;n+2\(⋮\)d

=>[(n+2)-(n+1)]\(⋮\)d

=>[n+2-n-1]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(n+1;n+2)=1 nên phân số \(\frac{n+1}{n+2}\) luôn tối giản(nEN*)

19 tháng 5 2016

Gọi d là ƯC( n+1; n+2)

=> (n+ 1) \(⋮\)d và (n+ 2) \(⋮\)d

=> ( n+2 - n-2)\(⋮\) d

=> 1\(⋮\)d

=> d=1

=> \(\frac{n+1}{n+2}\) là phân số tối giản.

27 tháng 4 2023

a)Do m ∈ Z => 2m+3, m+1  ∈ Z

Để 2m+3/m+1  ∈ Z => 2m+3 ⋮ m+1

Mà m+1 ⋮ m+1 => 2(m+1) ⋮ m+1 => 2m+2 ⋮ m+1

=> (2m+3)-(2m+2) ⋮ m+1 => 1 ⋮ m+1

Do m+1 ∈ Z => m+1 ∈ {1; -1}

Nếu m + 1 = 1 => m = 0 (t/m)

m+1 = -1 => m = -2 (t/m)

Vậy m ∈ {0; -2}

b) Gọi ƯCLN(2m+3, m+1) = d (d ∈ N*)

=> 2m+3 

m+1 ⋮ d => 2(m+1) ⋮ d => 2m+2 ⋮ d

=> (2m+3) - (2m+2) ⋮ d

=> 1 ⋮ d

Mà d∈ N* => d =1

Vậy phân số B tối giản (đpcm)

20 tháng 4 2018

1)
Gọi d là ƯCLN của n+1;2n+1, ta có:

\(n+1⋮d\Rightarrow2n+2⋮d\)(1)

\(2n+1⋮d\) (2)
Lấy (1) -(2) có:

\(1⋮d\) \(\Rightarrow d=1\)

Vì ƯCLN(n+1;2n+1)=1 nên n+1 và 2n+1 nguyên tố cùng nhau

Do đó p/s: A tối giản

20 tháng 4 2018

2)Gọi số cần tìm là a

Theo bài ra ta có:

\(20+\dfrac{1}{4}a=36\)

\(\Rightarrow\dfrac{1}{4}a=16\Rightarrow a=64\)

Vậy số cần tìm là 64

Bài 2: 

Gọi số cần tìm là a

Theo đề, ta có: \(\dfrac{a+13}{a+19}=\dfrac{5}{7}\)

=>7a+91=5a+95

=>2a=4

hay a=2