\(\dfrac{10x^2+9x+4}{20x^2+20x+9}\) tối giản với n tự nhiên.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

bạn dùng hệ số bất định 

(x2+ax+b)(x2+cx+d)=x4+cx3+dx2+ax3+acx2+adx+bx2+bcx+bd

                               =x4+x3(a+c)+x2(b+ac+d)+x(ad+bc)+bd

=>a+c=-1

=>b+ac+d=-10               =>a=2;b=-2;c=-3;d=-2

=>ad+bc=20

=>bd=4

vây x4-x3-10x2+20x+4=(x2+2x-2)(x2-3x-2)=0

=> x2+2x-2=0

=> x2-3x-2=0 bạn tự giải nhé

 

27 tháng 8 2016

\(\left(x^2+\text{ax}+b\right)\left(x^2+cx+d\right)=x^4+cx^3+dx^2+\text{ax}^3+acx^2+adx+bx^2+bcx+bd\\ =>a+c=1\\ =>b+ac+d=-10\)

\(=>ad+bc=20\\ =>a=2;b=-2;c=-3;d=-2\\ =>bd=4\\ \)

Vậy \(x^4-x^3-10x^2+20x+4=\left(x^2+2x-2\right)\left(x^2-3x-2\right)=0\\ =>x^2+2x-2=0\\ =>x^2-3x-2=0\)

\(=>x^2-x-2x-2=0\\ =>x\left(x-1\right)-2\left(x-1\right)=0\\ =>\left(x-1\right)\left(x-2\right)=0\)

tới đây chắc dễ dàng 

22 tháng 11 2017

Gọi d là ước chung lớn nhất của \(10n^2+9n+4\)\(20n^2+20n+9\)

\(\Rightarrow10n^2+9n+4⋮d\Rightarrow20n^2+18n+8⋮d\)

cũng có \(20n^2+20n+9⋮d\)

\(\Rightarrow20n^2+20n+9-\left(20n^2+18n+8\right)⋮d\)

\(\Rightarrow n+1⋮d\)

\(\Rightarrow n+1+10n^2+9n+4⋮d\)

\(\Rightarrow10n^2+10n+5⋮d\)

\(\Rightarrow20n^2+20n+10⋮d\)

\(\Rightarrow20n^2+20n+10-\left(20n^2+20n+9\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do ƯCLN của tử và mẫu bằng 1 nên phân số này tối giản

28 tháng 10 2022

b:

ĐKXĐ: x>0

 \(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)

\(\Leftrightarrow x+1-2\sqrt{x}=0\)

=>x=1

24 tháng 10 2018

a) ta có \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\)

\(\Leftrightarrow\sqrt{12\left(x+\dfrac{1}{2}\right)^2+16}+\sqrt{20\left(x+\dfrac{1}{2}\right)^2+9}=-\left(2x+1\right)^2+7\)

ta có : \(VT\ge\sqrt{16}+\sqrt{9}=7\)\(VT\le7\)

\(\Rightarrow VT=VP\) \(\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)

b) điều kiện \(x>0\)

ta có : \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\) \(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-2=0\)

\(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}}=2\Leftrightarrow x+\sqrt{x}=2\sqrt{x}\)

\(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\left(N\right)\end{matrix}\right.\)

vậy \(x=1\)

23 tháng 10 2018

Mysterious Person giup mk nha

28 tháng 10 2022

b:

ĐKXĐ: x>0

 \(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)

\(\Leftrightarrow x+1-2\sqrt{x}=0\)

=>x=1

31 tháng 8 2015

\(\sqrt{\left(2x\right)^2+2.2x.5+5^2}+\sqrt{x^2+2.x.3+3^2}=10x-20\)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x+3\right)^2}=10x-20\)

\(\Leftrightarrow2x+5+x+3=10x-20\)

\(\Leftrightarrow7x=28\Leftrightarrow x=4\)

10 tháng 9 2020
  • giải phương trình sau:\(\sqrt{x^2+10x+26}+\sqrt{2x^2+20x+57}=1+\sqrt{7}\)bạn nào giải được mình bái phục bạn ấy à mình làm youtube nhé youtube của mình là: Long VH đăng ký nhé thanks