Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
a) Biến đổi vế trái ta có:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)
\(=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{9\sqrt{6}+4\sqrt{6}-12\sqrt{6}}{6}=\frac{\sqrt{6}}{6}=VP\)
Vậy đẳng thức trên đc chứng minh
b) Biến đổi vế trái ta có:
\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right)\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{6}{x}\cdot\frac{1}{6x}}+\sqrt{\frac{2x}{3}\cdot\frac{1}{6x}}+\sqrt{6x}\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{1}{x^2}}+\sqrt{\frac{1}{9}}+1=1+\frac{1}{3}+1=2\frac{1}{3}=VP\)
Vậy đẳng thức trên đc chứng minh
a)\(\frac{3.\sqrt{6}}{2}+\frac{2.\sqrt{2}}{\sqrt{3}}-\frac{4.\sqrt{3}}{\sqrt{2}}=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{2}.\sqrt{3}}{\sqrt{3}.\sqrt{3}}-\frac{4.\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{2\sqrt{6}}{3}-\frac{\sqrt{6}}{2}=\frac{4\sqrt{6}-3\sqrt{6}}{6}=\frac{\sqrt{6}}{6}\)
--> dpcm
b) \(\left(\frac{-\sqrt{7}.\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}.\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right).\frac{\sqrt{7}-\sqrt{5}}{1}\)
=\(\left(-\sqrt{7}-\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
=\(-1.\left(\sqrt{7}+\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
=\(-1.\left(7-5\right)\)
=-1.2
=-2
a) Biến đổi vế trái ta có:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)
\(\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{9\sqrt{6}+4\sqrt{6}-12\sqrt{6}}{6}=\frac{\sqrt{6}}{6}=VP\)
Vậy đẳng thức trên được chứng minh
b)Biến đổi vế trái ta được
\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right)\cdot\sqrt{\frac{1}{6x}}\)
\(=x\sqrt{\frac{6}{x}\cdot\frac{1}{6x}}+\sqrt{\frac{2x}{3}\cdot\frac{1}{6x}}+\sqrt{6x\cdot\frac{1}{6x}}\)
\(=x\sqrt{\frac{1}{x^2}}+\sqrt{\frac{1}{9}}+1=1+\frac{1}{3}+1=2\frac{1}{3}=VP\)
Vậy đẳng thức trên được chứng minh
a)= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
= \(-1+\sqrt{100}\)
= -1 +10
=9
b)Ta có\(\left(\sqrt{n+1}-\sqrt{n}\right)\cdot\left(\sqrt{n+1}+\sqrt{n}\right)\)=n+1-n=1 (1)
Lại có:\(\frac{1}{\sqrt{n+1}+1}\cdot\left(\sqrt{n+1}+1\right)=1\)(2)
Từ (1) và (2)=>\(\left(\sqrt{n+1}-1\right)=\frac{1}{\sqrt{n+1}+1}\)