Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz
= xy(X + y + z) + yz(x + y + z) + xz(X + y + z)
= (x + y +z)(xy + yz+ xz)
b) xy(x + y) - yz(y + z) - xz(z - x)
= x2y + xy2 - y2z - yz2 - xz2 + x2z
= x2(y + z) - yz(y + z) + x(y2 - z2)
= x2(y + z) - yz(y + z) + x(y + z)(y - z)
= (y + z)(x2 - yz + xy - xz)
= (y + z)[x(x + y) - z(x + y)]
= (y + z)(x + y)(x - z)
c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)
= x(y - z)(y + z) + yz2 - yx2 + x2z - y2z
= x(y - z)(y + z) - yz(y - z) - x2(y - z)
= (y - z)((xy + xz - yz - x2)
= (y - z)[x(y - x) - z(y - x)]
= (y - z)(x - z)(y -x)
Có: \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)
\(=2xy+2yz+2xz\)
\(=2\left(xy+yz+xz\right)\)
\(\left[\left(x+y\right)+z\right]^2=\left[\left(x+y\right)^2+2.\left(x+y\right)z+z^2\right]=x^2+2xy+y^2+2xz+2yz+z^2\)\(+z^2\)
Thay vào: x^2+y^2+z^2+ 2xy+2yz+2xz - x^2 - y^2 - z^2= 2(xy+yz+xz) (đpcm)
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
(x+y+z)^2-x^2-y^2-z^2=2
=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2
=2xy+2yz+2xz=2(xy+yz+xz) (đpcm)
(x+y+z)2-x2-y2-z2=2(xy+yz+zx)
x2+y2+z2+2xy+2yz+2zx-x2-y2-z2=2(xy+yz+zx)
\(\Rightarrow\)2xy+2yz+2zx=2(xy+yz+zx)
\(\Rightarrow\)2(xy+yz+zx)=2(xy+yz+zx)
vậy (x+y+z)2-x2-y2-z2=2(xy+yz+zx)
a)\(x^3+y^3+z^3-3xyz\\ \left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left[\left(x+y\right)^3+z^3\right]-\left[3xyz+3xy\left(x+y\right)\right]\\=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right] \\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+x^2-xy-xz-yz\right)\)
thôi mk gợi ý nhé
biến đổi giả thiết như sau
(3xyz-3xy)-(3xz-3x)-(3yz-3y)+(3z-3)=x+y+z-3 =(x-1)+(y-1)+(z-1)
(=) 3(x-1)(y-1)(z-1) = (x-1)+(y-1)+(z-1)
=) 9[(x-1)(y-1)(z-1)]2=[(x-1)+(y-1)+(z-1)]2 >= 3[(x-1)(y-1)+(y-1)(z-1)+(z-1)(x-1)] (áp dụng BĐT a2+b2+c2>=ab+bc+ca)
phần còn lại bn triệt tiêu 3 mỗi vế là xong
năm mới chúc bn hc tốt, chăm chỉ và nghe lời cha mẹ
Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>
Ta có:
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right).z-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yx-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
=> \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz\)