Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2\) = (a+b)\(^2\) - 2ab
ta có
(a+b)\(^2\) - 2ab
= a\(^2\) + 2ab + b\(^2\) - 2ab
= a\(^2\) + b\(^2\) ( đpcm)
\(BĐVT:\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)
\(=a^2+b^2+a^2+b^2\)
\(=2\left(a^2+b^2\right)\left(BVP\right)\left(đpcm\right)\)
\(\left(-a-b\right)^2=\left(-a\right)^2-2.\left(-a\right).b+b^2\)
\(=a^2+2ab+b^2\)(1)
\(\left(a+b\right)^2=a^2+2ab+b^2\)(2)
Từ (1) và (2) => \(\left(-a-b\right)^2=\left(a+b\right)^2\)
\(\left(-a-b\right)\)\(2\)\(=\)\(\left(-a\right)\)\(2\)\(-\)\(2\)\(.\)\(\left(-a\right)\)\(.\)\(b\)\(+\)\(b^2\)
\(=\)\(a^2\)\(+\)\(2\)\(.\)\(ab\)\(+\)\(b^2\)\(\left(1\right)\)
\(\left(a+b\right)\)\(=\)\(a\)\(+\)\(2\)\(.\)\(ab\)\(+\)\(b\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta có :
\(\left(-a-b\right)\)\(^2\)\(=\)\(\left(a+b\right)\)\(^2\)
a) (a-b)^3=-(b-a)^3
\(Taco:-\left(b-a\right)^3\)
=\(-\left(b-a\right)\left(b-a\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(b-a\right)\left(b-a\right)\)
\(=-\left(a-b\right)\left(a-b\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a-b\right)^3\)
\(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)\)
\(=-\left(a+b\right)\left(-a-b\right)\)
\(=\left(a+b\right)\left(a+b\right)\)
\(=\left(a+b\right)^2\)
a/ -(b-a)^3= -(b^3-3b^2a+3ba^2-a^3)
= -b^3+3ab^2a-3ba^2+a^3
= (a-b)^3
b/ tương tự ta dùng hằng đẳng thức để chứng minh
a) a - b = - (b - a) = (-1)*(b - a)
=> (a - b)3 = [(-1)*(b - a)]3 = (-1)3 * (b - a)3 = -(b - a)3
b) -(a + b) = (- a - b)
=> (-1)2 * (a + b)2 = (-a - b)2
=> (-a -b)2 = (a + b)2
(-a-b)2=[-1(a+b)]2=(-1)2(a+b)2=(a+b)2 (đpcm)
(–a – b)2 = [(– 1).(a + b)]2
= (–1)2(a + b)2
= 1.(a + b)2
= (a + b)2 (đpcm)