\(x^2+y^2=\left(x+y\right)^2-2xy\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

a) \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)

b) \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)=\left(a+b\right)^2-\left(a^2-b^2\right)=a^2+2ab+b^2-a^2+b^2\)

\(=2ab+2b^2=2b\left(a+b\right)\)

c)\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=2b.2a=4ab\) 

a: \(\left(x+y\right)^2-2xy\)

\(=x^2+2xy+y^2-2xy\)

\(=x^2+y^2\)

b: \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)\)

\(=\left(a+b\right)\left(a+b-a+b\right)\)

\(=2b\left(a+b\right)\)

c: \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=4ab\)

27 tháng 5 2017

cố gắng là làm được

27 tháng 5 2017

câu 2:

a(b-c)-b(a+c)+c(a-b)=-2bc

ta có: 

a( b-c ) - b ( a +c )+ c(a-b)

=ab-ac-(ba+bc)+(ca-cb)

=ab-ac-ba-bc+ca-cb

=ab-ba-ac+ca-bc-cb

=0-0-bc-cb

=bc+(-cb)

=-2cb    hay -2bc

b)a(1-b)+a(a^2-1)=a(a^2-b)

Ta có:

a(1-b) + a(a^2-1)

=a-ab+(a^3-a)

=a-ab+a^3-a

=a-a-ab+a^3

=0-ab+a^3

=-ab+a^3

=a(-b +a^2)     hay a(a^2-b)

15 tháng 7 2019

1: a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2.7+37\) (Vì \(x-y=7\))

\(=100\)

Vậy \(A=100\)

b) Ta có: \(B=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10\)

\(=25\)

Vậy \(B=25\)

c) Ta có : \(C=\left(x-y\right)^2\)

\(=x^2-2xy+y^2\)

\(=\left(x^2+y^2\right)-2xy\)

\(=26-2.5\) (Vì \(x^2+y^2=26\) ; \(xy=5\))

\(=16\)

Vậy \(C=16\)

15 tháng 7 2019

2: a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2\)

\(=x^2+2xy\)

\(=x\left(x+2y\right)\) \(\left(dpcm\right)\)

b) \(\left(x^2+y^2\right)^2-2xy^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\left(x+y\right)^2\) \(\left(dpcm\right)\)

c) \(\left(x+y\right)^2=x^2+2xy+y^2\)

\(=\left(x^2-2xy+y^2\right)+4xy\)

\(=\left(x-y\right)^2+4xy\) \(\left(dpcm\right)\)

Chúc bn học tốt ✔✔✔

31 tháng 7 2020

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)

\(\Rightarrow dpcm\)

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)

\(\Rightarrow dpcm\)

c.d làm tương tự

31 tháng 7 2020

Bài làm

a) Biến đổi vế trái, ta được:

\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)

\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5-y^5=VP\left(đpcm\right)\)

b) Biến đổi vế trái, ta có:

\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5+y^5=VP\left(đpcm\right)\)

c) Biến đổi vế trái, ta có: 

\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)

\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)

\(=a^4-b^4=VP\left(đpcm\right)\)

d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.

\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

Biến đổi vế trái, ta có:

\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)

\(=a^3+b^3=VP\left(đpcm\right)\)

15 tháng 7 2019

bài 2: a bạn có thể thêm bớt y^2 vào vế bên phải

bài 2 c thì bạn có thể mở ngoặc ở vế phải rồi tính sau đó áp dụng hđt

16 tháng 8 2017

 a,(x+y)2-y2                                                       b, (x2+y2)2-(2xy)2

=x2+2xy+y2-y2                                                                        =(x2+y2+2xy)(x2+y2-2xy)

=x2+2xy                                                                                        =(x+y)2.(x-y)2=VP

=x(x+2y)=VP

2 tháng 5 2018

Hỏi đáp ToánHỏi đáp Toán

2 tháng 5 2018

Mình giải hết cho bạn rùi nek :))

13 tháng 7 2017

a) \(\left(x+y\right)^2-y^2=x\left(x+y^2\right)\)

\(\Leftrightarrow\left(x+y+y\right)\left(x+y-y\right)=x^2+xy^2\)

\(\Leftrightarrow\left(x+2y\right)x=x^2+xy^2\)

\(\Leftrightarrow x^2+2xy-x^2-xy=0\)

\(\Leftrightarrow xy=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\y=0\\x=y=0\end{matrix}\right.\)

13 tháng 7 2017

Chứng minh đẳng thức mà, làm kì quá ông ơi

16 tháng 6 2018

Chúc bạn học tốt vuiNhững hằng đẳng thức đáng nhớ

17 tháng 6 2018

haha