K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(-a-b\right)^2=\left(-a\right)^2-2.\left(-a\right).b+b^2\)

\(=a^2+2ab+b^2\)(1)

\(\left(a+b\right)^2=a^2+2ab+b^2\)(2)

Từ (1) và (2) => \(\left(-a-b\right)^2=\left(a+b\right)^2\)

4 tháng 9 2017

       \(\left(-a-b\right)\)\(2\)\(=\)\(\left(-a\right)\)\(2\)\(-\)\(2\)\(.\)\(\left(-a\right)\)\(.\)\(b\)\(+\)\(b^2\)

\(=\)\(a^2\)\(+\)\(2\)\(.\)\(ab\)\(+\)\(b^2\)\(\left(1\right)\)

\(\left(a+b\right)\)\(=\)\(a\)\(+\)\(2\)\(.\)\(ab\)\(+\)\(b\)\(\left(2\right)\)

      Từ \(\left(1\right)\)và \(\left(2\right)\)ta có :

\(\left(-a-b\right)\)\(^2\)\(=\)\(\left(a+b\right)\)\(^2\)

17 tháng 8 2015

(a+b)2

= (a+b).(a+b)

= a.a+a.b+b.a+b.b

= a2+ab+ab+b2

= a2+2ab+b2

=> đpcm

17 tháng 8 2015

(a+b)3=(a+b)(a+b)(a+b)

=a(a+b)(a+b)+b(a+b)(a+b)

=(a2+ab)(a+b)+(ab+b2)(a+b)

=(a3+a2b+a2b+ab2)+(a2b+ab2+ab2+b3)

=a3+a2b+a2b+ab2+a2b+ab2+ab2+b3

=a3+a2b+a2b+a2b+ab2+ab2+ab2+b3

=a3+3a2b+3ab2+b3

vậy (a+b)= a3 +3a2b +3ab+ b3 =>dpcm

 

27 tháng 8 2020

\(VT=\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)\)     

\(=\left(a-b\right)\left(a^2+ab+b^2+ab\right)\)             

\(=\left(a-b\right)\left(a^2+2ab+b^2\right)\)    

\(=\left(a-b\right)\left(a+b\right)^2\)              

\(=VP\left(đpcm\right)\)         

27 tháng 8 2020

Ta có: \(a^3-b^3+ab\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2+ab\right)=\left(a-b\right)\left(a^2+2ab+b^2\right)\)

\(=\left(a-b\right)\left(a+b\right)^2\)( đpcm )

19 tháng 7 2017

a(b+c)2+b(a+c)2+c(a+b)2-4abc=(b+c)(c+a)(a+b)

VT = a(b^2+2bc+c^2) + b(c^2 +2ac + a^2) + c(a^2 + 2ab + b^2) - 4abc
= ab^2 + 2abc + ac^2 + bc^2 + 2abc + ba^2 + ca^2 + 2abc + cb^2 - 4abc
= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 + 2abc
VP = ( a+b)(b+c)(c+a)
= (ab + ac + b^2 + bc )( c+a )
= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 + 2abc

Vậy VP=VT => a(b+c)^2+b(c+a)^2+c(a+b)^2−4abc=(a+b)(b+c)(c+a)
chúc bạn học tốt ạ

4 tháng 6 2017

a) ta có: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)(1)

              \(-\left(b-a\right)^3=-\left(b^3-3b^2a+3ba^2-a^3\right)\)

                                       \(=a^3-3a^2b+3ab^2-b^3\)(2)

từ (1) và (2) \(\Rightarrow\left(a-b\right)^3=-\left(b-a\right)^3\)

b) ta có: \(\left(a+b\right)^2=a^2+2ab+b^2\)(3)

            \(\left(-a-b^2\right)=\left(-a\right)^2-2\left(-a\right)\cdot b+\left(-b\right)^2\)

                                     \(=a^2+2ab+b^2\)(4)

từ (3) và (4) \(\Rightarrow\left(-a-b\right)^2=\left(a+b\right)^2\)