\(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

xuất phát từ vế phải và quy đồng mẫu thức, ta có :

VP=\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\left(dpcm\right)\)

5 tháng 2 2018

\(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

<=>\(\dfrac{1}{n\left(n+1\right)}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)

<=>1=n+1-n

<=>1=1

vậy \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

16 tháng 8 2017

a) \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

b) \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

16 tháng 8 2017

a, \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}^2\)

\(=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)\)

\(=\left(x-2\right)\left(x+1\right)\)

b, \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\)

\(=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}^2\)

\(=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)\)

\(=\left(x-2\right)\left(x+1\right)\)

Chúc bạn học tốt!!!

20 tháng 11 2017

1/

\(\dfrac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)

\(=\dfrac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)

\(=\dfrac{x^3-6x^2y}{x-6y}\)

\(=\dfrac{x^2\left(x-6y\right)}{x-6y}\)

\(=x^2\)

\(2\)/

\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(x-y+z^{ }\right)^2}{\left(x-y\right)^2-z^2}\)

\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\dfrac{x-y+z}{x-y-z}\)

3/

\(\dfrac{\left(n+1\right)!}{n!\left(n+2\right)}\)

\(=\dfrac{n!\left(n+1\right)}{n!\left(n+2\right)}\)

\(=\dfrac{n+1}{n+2}\)

4/

\(\dfrac{n!}{\left(n+1\right)!-n!}\)

\(=\dfrac{n!}{n!\left(n+1\right)-n!}\)

\(=\dfrac{n!}{n!\left[\left(n+1\right)-1\right]}\)

\(=\dfrac{n!}{n!.n}\)

\(=\dfrac{1}{n}\)

5/

\(\dfrac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}\)

\(=\dfrac{\left(n+1\right)!-\left(n+1\right)!\left(n+2\right)}{\left(n+1\right)!+\left(n+1\right)!\left(n+2\right)}\)

\(=\dfrac{\left(n+1\right)!\left(-n-1\right)}{\left(n+1\right)!\left(n+3\right)}\)

\(=\dfrac{-n-1}{n+3}\)

20 tháng 11 2017

Hỏi đáp ToánHỏi đáp Toán

9 tháng 2 2018

\(a^2+\left(a+1\right)^2=a^2+a^2+2a+1\\ =2a^2+2a+1>2a\left(a+1\right)\\ \Rightarrow\dfrac{1}{a^2+\left(a+1\right)^2}< \dfrac{1}{2a\left(a+1\right)}\)

\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^{^2}}\\ =\dfrac{1}{1^2+2^2}+\dfrac{1}{2^2+3^2}+\dfrac{1}{3^2+4^2}+...+\dfrac{1}{n^2+\left(n+1\right)^2}\\ < \dfrac{1}{2.1.\left(1+2\right)}+\dfrac{1}{2.2\left(2+1\right)}+....+\dfrac{1}{2n\left(n+1\right)}\\ =\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{n+1}\right)\\ =\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{n+1}\right)\\ =\dfrac{5}{12}-\dfrac{1}{2n+2}< \dfrac{5}{12}< \dfrac{9}{20}\)

25 tháng 12 2017

b.

\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+....+\dfrac{2}{\left(n-1\right).n.\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}-\dfrac{1}{n\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+1\right)}\right)=\dfrac{1}{4}-\dfrac{1}{2n\left(n+1\right)}\)

4 tháng 11 2017

Bài 1.

a) Do hai phân thức bằng nhau , ta có :

( x +2)P( x2 - 22) = ( x - 1)Q( x -2)

=( x + 2)P( x - 2)( x + 2) = ( x - 1)Q( x - 2)

Suy ra : P = x - 1 ; Q = ( x + 2)2

b) Do hai phân thức bằng nhau , ta có :

( x + 2)P(x2 - 2x + 1) = ( x - 2)Q( x2 - 1)

= ( x + 2)P( x - 1)2 = ( x - 2)Q( x - 1)( x + 1)

Suy ra : P = ( x - 2)( x + 1) = x2 - x - 2

Q = ( x + 2)( x - 1) = x2 + x + 2

4 tháng 11 2017

Bài 2. a) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)

Xét : ( P + Q)S= PS + QS = QR + QS = Q( R + S)

-> \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)

b) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)

Xét : ( S - R)P = PS - PR = QR - PR = R( Q - P)

-> \(\dfrac{R-S}{R}=\dfrac{Q-P}{P}\)

- > \(\dfrac{R}{R-S}=\dfrac{P}{Q-P}\)

19 tháng 6 2017

a) \(\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+5y^{n-1}\right)-4\left(x^{n+1}+2y^{n-1}\right)\)

\(=3x^{n+1}-y^{n-1}-3x^{n+1}-15y^{n-1}+4x^{n+1}+8y^{n-1}\)

\(=-8y^{n-1}+4x^{n+1}\)

b) \(\left(\dfrac{3}{4}x^{n+1}-\dfrac{1}{2}y^n\right)\cdot2xy-\left(\dfrac{2}{3}x^{n+1}-\dfrac{5}{6}y^n\right)\cdot7xy\)

\(=\dfrac{3}{2}x^{n+2}y-xy^{n+1}+\left(-\dfrac{2}{3}x^{n+1}-\dfrac{5}{6}y^n\right)\cdot7xy\)

\(=\dfrac{3}{2}x^{n+2}y-xy^{n+1}-\dfrac{14}{3}x^{n+2}y+\dfrac{35}{6}xy^{n+1}\)

\(=-\dfrac{19}{6}x^{n+2}y+\dfrac{29}{6}xy^{n+1}\)

19 tháng 6 2017

a)\(\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+5y^{n-1}\right)+4\left(x^{n+1}+2y^{n-1}\right)\)

\(=3x^{n+1}-y^{n-1}-3x^{n+1}-15y^{n-1}+4x^{n+1}+8y^{n-1}\)

\(=4x^{n+1}-8y^{n-1}\) \(\left(=4\left(x^{n+1}-2y^{n-1}\right)\right)\)

NV
30 tháng 11 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\Rightarrow ab+bc+ac=1\)

Ta có \(1+a^2=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự ta được \(1+b^2=\left(a+b\right)\left(b+c\right)\); \(1+c^2=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow A=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) \(\Rightarrow A\) là số chính phương

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng