Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biến đổi vế trái, ta có:
VT = a( b + c ) - a( b + d )
/
VT a( b c ) a( b d )
= ab + ac - ab - ad
= ac - ad
= a( c - d ) = VP
Vậy a( b + c ) - a( b + d ) = a( c - d ) ( đpcm )
b) Biến đổi vế trái, ta có:
VT = a( b - c ) + a( d + c )
= ab - ac + ad + ac
= ab + ad
= a( b + d ) = VP
Vậy a( b - c ) + a( d + c ) = a( b + d ) ( đpcm )
1) \(a\left(b+c\right)-a\left(b+d\right)=ab+ac-ab-ad\)
\(=\left(ab-ab\right)+\left(ac-ad\right)=ac-ad=a\left(c-d\right)\)
2) \(a\left(b-c\right)+a\left(d+c\right)=ab-ac+ad+ac\)
\(=\left(ab+ad\right)+\left(ac-ac\right)=ab+ad=a\left(b+d\right)\)
Ta có:
Vế trái: -a.(c-d)-d.(a+c)
=-ac+ad-ad-cd
=-ac-cd (1)
Vế phải: -c(a+d)=-ac-cd (1)
Vì (1)=(2)
<=> -a.(c-d)-d.(a+c)=-c.(a+d) (đpcm)
(Lưu ý: "đpcm" nghĩa là "điều phải chứng minh".)
Lời giải:
1) \(VT=-a.\left(c-d\right)-d.\left(a+c\right)\)
$=-ac+ad-da-dc$
$=-ac-dc$
$=-c(a+d) (đpcm)$
$2) (3a+2).(2a-1)+(3-a).(6a+2)-17.(a-1)$
$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$
$=21$
Vậy giá trị biểu thức không phụ thuộc vào a
(a - b - c + d) - (-a - b + c + d)
= a - b - c + d + a + b - c - d
= (a + a) + (b - b) - (c + c) + (d - d)
= 2a + 0 - 2c + 0
= 2a - 2c
= 2(a - c)
(a - b - c + d) - (-a - b + c + d)
= a - b - c + d + a + b - c - d
= 2a - 2c
= 2.(a - c) (đpcm)
Chúc em học tốt!!!
1) a( b+c) - b(a-c) = ( a+b) c
VT = a( b+c) - b(a-c)
= ab + ac - ab + bc
= ac + bc
= c(a + b) (=VP)
2)a (b - c)- a (b+d)= - a (c+d)
VT= a (b - c)- a (b+d)
= ab - ac - ab - ad
= -ac - ad
= -a(c + d) (=VP)
a) \(\left(a-b\right)-\left(2c-4a\right)+3c\)
\(=a-b-2c+4a+3c\)
\(=5a-b+c\)
b) \(\left(12-60\right)-\left(2.-135-4.12\right)+3.-135\)
\(=-48-\left(-318\right)+\left(-405\right)\)
\(=-135\)
Bài 1:
a, A=(a-b)-(2c-4a)+3c
=a-b-2c+4a+3c
=5a-b+c
b, thay a=12; b=60; c=-135
A=5*12-60+(-135)
A=-135
Bài 2:
a, (a-b)+(c-d)-(a+c)
=a-b+c-d-a-c
=-b-d
=-(b+d) (đpcm)
b, (a-b)-(c-d)+(b+c)
=a-b-c+d+b+c
=a+d (xem lại đề bài bạn)
Chúc may mắn
1, Chứng minh đẳng thức :
a) (a - b + c) - (a + c) = -b
(a - b + c) - (a + c)
=a-b+c-a-c
=(a-a)+(c-c)-b
=0+0-b
=-b
b) (a + b) - (b - a) + c = 2a + c
(a + b) - (b - a) + c
=a+b-b+a+c
=(a+a)+(b-b)+c
=2a+0+c
=2a+c
c) -( a + b - c) + (a- b- c) = -2b
-( a + b - c) + (a- b- c)
=-a-b+c+a-b-c
=[a+(-a)]+[c+(-c)]-b-b
=0+0-(b+b)
=-2b
d) a( b+c) - a (b +d) =a( c-d )
a( b+c) - a (b +d)
=ab+ac-(ab+ad)
=(ab-ab)+ac-ad
=0+ac-ad
=a(c-d)
e) a (b - c) + a( d+ c) = a( b+d)
a (b - c) + a( d+ c)
=ab-ac+ad+ac
=(ac+(-ac))+ad+ab
=0+ad+ab
=a(d+b)
1
a) \( (a - b + c) - (a + c) \)
\(=\left(a+c-b\right)-\left(a+c\right)\)
\(=\left[\left(a-c\right)-\left(a-c\right)\right]-b\)
\(=0-b\)
\(=-b\)
b) \( (a + b) - (b - a) + c \)
\(=a+b-b+a+c\)
\(=\left(a+a\right)+\left(b-b\right)+c\)
\(=\left(a+a\right)-0+c\)
\(=a+a+c\)
\(=2a+c\)
2
\(P=a+ [( a - 3 ) - (-a - 2)]\)
\(P=a+a-3+a+2\)
\(P=a+a+a-3+2\)
\(P=3a-3+2\)
\(P=0+2\)
\(P=2\)
\(Q=[a + (a +3)] - [( a + 2) - ( a - 2)]\)
\(Q=a+a+3-a-2-a+2\)
\(Q=a+a+3-a+\left(-2-a+2\right)\)
\(Q=2a+3-a+a\)
\(Q=2a+3-2a\)
\(Q=3\)
Vì \(P=2;Q=3\Rightarrow P< Q\)
a) Biến đổi vế trái:
a( b -c) - a(b +d)
= ab -ac - ab + ad
= -ac + ad
= -( c +d) = Vế phải
b)Biến đổi vế trái:
(a +b)2
= (a +b)(a +b)
= a2 + ab + ab + b2
= a2 + 2ab + b2 = Vế phải