Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1/100x100+1/101x101+..........+1/199x199
Vì 1/100x100<99x100
1/101x101<100x101
...........
1/199x199 < 1/198x199
=) A< 1/99x100+1/100x101+...+1/198x199
A<1/99-1/100+1/100-1/101+.....+1/198-199
A<100/19701=0,0050....
Mà 1/100=0,01
=> A<1/100
K đúng nhé
C=\(\frac{101+100+...+3+2+1}{101-100+...+3-2+1}\)
=\(\frac{\left(101+1\right).101:2}{\left(101-100\right)+...+\left(3-2\right)+1}\) (nhóm 2 số hạng ở MS thì sẽ có 51 nhóm và dư 1 số hang )
=\(\frac{102.101:2}{1+...+1+1}\) ( Ms có 51 số 1)
=\(\frac{51.101}{51}\)=101
D=\(\frac{3737.43-4343.37}{2+4+6+...+100}\)
= \(\frac{37.101.43-43.101.37}{2+4+6+..+100}\)
= \(\frac{0}{2+4+6+...+100}\)
=0
Tick mik nha, thks bạn
\(A=\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{\left(\frac{101-1}{1}+1\right)\left(\frac{101+1}{2}\right)}{\left(\frac{101-1}{2}+1\right)\left(\frac{101+1}{2}\right)-\left(\frac{100-2}{2}+1\right)\left(\frac{100+2}{2}\right)}=\frac{101.51}{51.51-50.51}\frac{101.51}{51}=101\)
Gọi \(101+100+99+98+...+3+2+1\) là \(A\)
Gọi \(101-100+99-98+...+3-2+1\) là \(B\)
Ta có:
\(A=1+2+3+...+98+99+100+101\\ =\dfrac{101\cdot\left(101+1\right)}{2}\\ =\dfrac{101\cdot102}{2}\\ =5151\)
\(B=101-100+99-98+...+3-2+1\\ =\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\\ =1+1+...+1+1\)
C = \(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(C=\frac{\left(101+1\right).101:2}{1+1+...+1+1}\)
\(C=\frac{5151}{51}\)
\(C=101\)
b) \(D=\frac{3737.43-4343.37}{2+4+6+...+100}\)
\(D=\frac{37.101.43-43.101.37}{2+4+6+...+100}\)
\(D=\frac{0}{2+4+6+...+100}\)
\(D=0\)
Nhận xét: mẫu số của mỗi phân số thuộc số bị trừ trong phép tính trên là số thứ tự của phân số đó trong dãy trên.
Từ đó, ta biết được rằng dãy trên ( số bị trừ có 100 phân số )
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\left(1+1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
( Tách 100 thành 100 số 1 )
\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}...+\frac{99}{100}\left(đpcm\right).\)
Xét vế trái:
A = 1+2+22+23+....+2100
2A = 2+22+23+24+....+2101
2A - A = 2101 - 1
=> A = 2101 - 1 = vế phải
=> 1+2+22+23+....+2100 = 2101 - 1 (đpcm)
A=1+22+23+..+2100
2A=2+22+23+...+2101
2A-A=(2+22+23+...+2101)-(1+22+23+..+2100)
A= 2101 - 1
Nhớ nhấn đúng cko mjk nhé!!!