Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : C(x) = P(x) + H(x)
=> C(x) = 4x2 - 1 + x4 + 3
=> C(x) = x4 + 4x2 + 2
Mà x4 \(\ge0\forall x\)
4x2 \(\ge0\forall x\)
Nên C(x) = x4 + 4x2 + 2 \(\ge2\forall x\)
=> C(x) = x4 + 4x2 + 2 \(\ne0\forall x\)
Vậy đa thức C(x) vô nhiệm
a.Ta có : \(^{x^2}\)\(\ge\)0\(\forall x\)
\(\Leftrightarrow x^2+3\ge3\forall x\)
\(\Rightarrow\)Đa thức trên vô nghiệm
a, x^2 + 3
có x^2 > 0 => x^2 + 3 > 3
=> đa thứ trên vô nghiệm
b, x^4 + 2x^2 + 1
x^4 > 0 ; 2x^2 > 0
=> x^4 + 2x^2 > 0
=> x^4 + 2x^2 + 1 > 1
vậy _
c, -4 - 3x^2
= -(4 + 3x^2)
3x^2 > 0 => 3x^2 + 4 > 4
=> -(4 + 3x^2) < 4
vậy_
*thu gọn đa thức f(x)
f(x)= 4x2+ 5x3- 3x2+ 4x4- x3+ 1- 4x3- 4x4
=4x4- 4x4+ 5x3- x3- 4x3+ 4x2- 3x2 +1
=x2+ 1
Chứng tỏ f(x) không có nghiệm
f(x)= x2+ 1
Ta có: x2\(\ge\)0 ( với mọi x\(\in\)R)
1 > 0
nên x2+ 1 > 0
mà x2 + 1 = 0 ( vô lí)
=> f(x) vô nghiệm
Ta có :
\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)
\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)
\(f\left(x\right)=x^2+1\)
Lại có :
\(x^2\ge0\)
\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)
Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 )
Chúc bạn học tốt ~
Ta có :
\(f\left(x\right)=4x^2+5x^3-3x^2+4x^4-x^3+1-4x^3-4x^4\)
\(f\left(x\right)=\left(4x^2-3x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-4x^4\right)+1\)
\(f\left(x\right)=x^2+1\)
Lại có :
\(x^2\ge0\)
\(\Rightarrow\)\(f\left(x\right)=x^2+1\ge0+1=1>0\)
Vậy đa thức \(f\left(x\right)\) không có nghiệm ( vì nó luôn lớn hơn 0 )
Chúc bạn học tốt ~
\(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
\(f\left(x\right)=\left(5x^3-x^3-4x^3\right)+\left(2x^4-x^4\right)+\left(-x^2+3x^2\right)+1\)
\(f\left(x\right)=x^4+2x^2+1\)
Cho \(f\left(x\right)=0\)
\(\Rightarrow f\left(x\right)=x^4+2x^2+1=0\)
Ta có:
\(x^4\ge0\)
\(2x^2\ge0\)
Do đó:
\(x^4+2x^2+1\ge0+1\)
\(x^4+2x^2+1\ge1\)
=> Vậy đa thức \(x^4+2x^2+1\) = \(5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\) vô nghiệm.
ta thấy cái khối -4x4+2x3-3x2+x>=0
=>cả chỗ kia >0 -->vô nghiệm
\(=\left(x^4+x^3+x^2\right)+\left(3x^2+3x+3\right)=x^2\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=\left(x^2+3\right)\left(x^2+x+1\right)=\left(x^2+3\right)\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(=\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
vì \(x^2>=0;3>0\Rightarrow x^2+3>0\)
\(\left(x+\frac{1}{2}\right)^2>=0;\frac{3}{4}>0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\Rightarrow\)đa thức trên vô nghiệm