Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :x2+5x+4=0
=>x2+x+4x+4=0
=>x(x+1)+4(x+1)=0
=>(x+1)(x+4)=0
=>\(\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Ta xét 3 khoảng giá trị:
+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này f(x) vô nghiệm.
+) Nếu \(0< x< 1\)
Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)
Vì 0 < x < 1 nên \(x^5,1-x^3>0\)
Áp dụng bđt Cauchy, ta được:
\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)
\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)
Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)
Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)
\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)
Ở khoảng này đa thức cũng vô nghiệm.
+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này đa thức cũng vô nghiệm.
Vậy đa thức f(x) vô nghiệm
có \(x^4+x^2\ge0\)
=> đa thức trên <0
=> đt trên vô nghiệm
chú ý: đây là toán lớp 8 mà
a) P(x)=3x2 - 5x3 +x + 2x3 - x - 4 + 3x3 + x4 + 7
= 3x2 - 5x3 + 2x3 + 3x3 + x - x + x4 - 4 + 7
= 3x2 + 0 + 0 + x4 + 3
= 3x2 + x4 + 3
b) Vì x2 > hoặc = 0 vs mọi x thuộc R
=)) 3x2 > hoặc = 3 vs mọi x thuộc R
=)) 3x2 + x4 + 3 > hoặc = x4 + 6 vs mọi x thuộc R
=)) 3x2 + x4 + 3 > 0
Vậy đa thức 3x2 + x4 + 3 vô nghiệm
2 thieu đề
Bạn Phan Cả Phát làm sai rồi, vì 3x2 có 2 trường hợp: 3x2 > 0 hoặc 3x2 = 0 vì x2 có thể = 0 được. VÌ vậy nếu bạn bảo 3x2 >/= 3 là sai
\(f\left(x\right)=-x^2-5x-10=-\left(x^2+5x+10\right)\)
\(=-\left[x^2+5x+\dfrac{40}{4}\right]=-\left[x^2+5x+\dfrac{25}{4}+\dfrac{15}{4}\right]\)
\(=-\left[\left(x+\dfrac{5}{2}\right)^2+\dfrac{15}{4}\right]=-\left(x+\dfrac{5}{2}\right)^2-\dfrac{15}{4}\)
Ta thấy: \(-\left(x+\dfrac{5}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\dfrac{5}{2}\right)^2-\dfrac{15}{4}< 0\forall x\)
Đa thức vô nghiệm