\(x^4+x^2+2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2015

​​vậy ,dài lắm,mình có cách ngắn hơn nhiều 

  • x4 lớn hơn hoặc bằng 0
  • x2 lớn hơn hoặc bằng 0

  • nên x4+x2+2 lớn hơn hoặc bằng 2 ,vậy nên đa thức vô nghiệm
9 tháng 5 2015

Ta có:

  •  \(x^4\ge0\)
  •  \(x^2\ge0\)

\(\Rightarrow x^4+x^2\ge0\)

\(x^4+x^2+2\ge2\)

Vậy đa thức trên vô nghiệm

26 tháng 3 2018

Áp dụng hằng đẳng thức đáng nhớ ta có :

x4+2x2+1=(x2+1)2

Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0

=>PT trên vô nghiệm

26 tháng 3 2018

Theo hằng đẳng thức đáng nhớ , ta có :

\(x^4+2x^2+1=\left(x^2+1\right)^2\)

Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)

\(\Rightarrow\left(x^2+1\right)^2>0\)

Vậy phương trình vô nghiệm.

13 tháng 4 2019

a.Ta có : \(^{x^2}\)\(\ge\)0\(\forall x\)

\(\Leftrightarrow x^2+3\ge3\forall x\)

\(\Rightarrow\)Đa thức trên vô nghiệm

1 tháng 7 2019

a, x^2 + 3

có x^2 > 0 => x^2 + 3 > 3

=> đa thứ trên vô nghiệm

b, x^4 + 2x^2 + 1

x^4 > 0 ; 2x^2 >

=> x^4 + 2x^2 >

=> x^4 + 2x^2 + 1 >

vậy _

c, -4 - 3x^2

= -(4 + 3x^2)

3x^2 > 0 => 3x^2 + 4 > 4

=> -(4 + 3x^2) < 4

vậy_

3 tháng 8 2016

\(\left(x-4\right)^2+\left(x+5\right)^2\)

Nếu đa thức trên có nghiệm là n

\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí 

Vậy đa thức trên không có nghiệm

3 tháng 8 2016

bạn ở dưới phải ghi ngoặc nhọn chứ

20 tháng 5 2018

\(=\left(x^4+x^3+x^2\right)+\left(3x^2+3x+3\right)=x^2\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=\left(x^2+3\right)\left(x^2+x+1\right)=\left(x^2+3\right)\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

\(=\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

vì \(x^2>=0;3>0\Rightarrow x^2+3>0\)

\(\left(x+\frac{1}{2}\right)^2>=0;\frac{3}{4}>0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\Rightarrow\)đa thức trên vô nghiệm

4 tháng 7 2019

a) \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy đa thức trên vô nghiệm

4 tháng 7 2019

b) \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Vì \(\left(x+1\right)^2\ge0\)nên \(\left(x+1\right)^2+2>0\)

Vậy đa thức trên vô nghiệm

20 tháng 7 2016

a, Ta có: f(x)= x2-10x+27 = (x-5)2+2>0

=> pt vô nghiệm

b, g(x)=x2+(2/3)x+4/9=x2+2.(1/3).x+1/9+1/3

           = (x+1/3)2+1/3>0

=> pt vô nghiệm.

20 tháng 7 2016

\(a,f\left(x\right)=x^2-10x+27\)

\(\Rightarrow f\left(x\right)=x^2-5x-5x+25+2\)

\(\Rightarrow f\left(x\right)=x\left(x-5\right)-5\left(x-5\right)+2\)

\(\Rightarrow f\left(x\right)=\left(x-5\right)^2+2\ge2>0\)  (Vì \(\left(x-5\right)^2\ge0\)  \(Vx\) )

Vậy đa thức f(x) vô nghiệm

\(b,g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}\)

\(\Rightarrow g\left(x\right)=x^2+\frac{1}{3}x+\frac{1}{3}x+\frac{1}{9}+\frac{3}{9}\)

\(\Rightarrow g\left(x\right)=x\left(x+\frac{1}{3}\right)+\frac{1}{3}\left(x+\frac{1}{3}\right)+\frac{1}{3}\)

\(\Rightarrow g\left(x\right)=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\)  (Vì \(\left(x+\frac{1}{3}\right)^2\ge0\)  \(Vx\) )

Vậy đa thức g(x) vô nghiệm

6 tháng 7 2017

Ta có : C(x) = P(x) + H(x)

=> C(x) = 4x2 - 1 + x4 + 3 

=> C(x) = x4 + 4x2 + 2 

Mà x4 \(\ge0\forall x\)

     4x2 \(\ge0\forall x\)

Nên C(x) = x4 + 4x2 + 2 \(\ge2\forall x\)

=> C(x) = x4 + 4x2 + 2 \(\ne0\forall x\)

Vậy đa thức C(x) vô nhiệm

:>> sáng hnay lm, cô ns : đây là cách giải lp ... cao hơn, nó cx nằm trog phần nâng cao lp 7

=>> cô ns : Giair đc thì càng tốt chứ sao (kaka)

\(-x^4-x^2-1=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Suy ra : \(-t^2-t-1=0\)

Ta có : \(\left(-1\right)^2-4.\left(-1\right).\left(-1\right)=-3< 0\)

Vậy phương trình vô nghiệm 

16 tháng 6 2020

nâng cao lớp 7 ? rõ ràng đó là delta của lớp 9 =)) không có ý cà khịa :D

\(-x^4-x^2-1=\left(-x^4\right)+\left(-x^2\right)+\left(-1\right)\)

ta có : \(-x^4\le0\);\(-x^2\le0\);\(-1< 0\)

suy ra \(-x^4+\left(-x^2\right)+\left(-1\right)< 0\)

nên đa thức sau vô nghiệm 

24 tháng 7 2020

\(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow x^2+\left(x-1\right)^2\ge0\)

Dấu "=" khi: \(\hept{\begin{cases}x^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)(Điều này vô lý)

Vậy dấu "=" không thể xảy ra hay đa thức đã cho không nhận giá trị bằng 0 (vô nghiệm)

24 tháng 7 2020

\(x^2+\left(x-1\right)^2\)

\(\hept{\begin{cases}x^2\ge0\forall x\\\left(x-1\right)^2\ge0\forall x\end{cases}\Rightarrow}x^2+\left(x-1\right)^2\ge0\forall x\)

=> Vô nghiệm ( đpcm )