\(f\left(x\right)=9x+\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2020

Ta có: \(g\left(x\right)=x^2-x\)có nghiệm x=0 và x=1 (vì \(x^2-x=x\left(x-1\right)\))

Để chứng minh \(f\left(x\right)⋮g\left(x\right)\), ta sẽ chứng minh \(f\left(x\right)\)cũng có nghiệm x=0 và x=1.

Thay x=0 vào \(f\left(x\right)\):\(f\left(0\right)\)\(=\left(-1\right)^{2018}+1^{2018}-2=0\)

Thay x=1 vào \(f\left(x\right)\)\(f\left(1\right)=1^{2018}+1^{2018}-2=0\)

\(\Rightarrow\)x=0 và x=1 là hai nghiệm của \(f\left(x\right)\)

\(\Rightarrowđpcm\)

31 tháng 7 2020

\(g\left(x\right)=x^2-x\)

g(x) có nghiệm\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)

Để chứng minh \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)thì ta chứng minh tất cả nghiệm của đa thức g(x) cũng là nghiệm của f(x) hay 1 và 0 là nghiệm của f(x) (1)

Thật vậy:\(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)

+) Thay x = 0 vào f(x), ta được: \(f\left(0\right)=\left(0^2+0-1\right)^{2018}+\left(0^2-0+1\right)^{2018}-2=1+1-2=0\)

+) Thay x = 1 vào f(x), ta được: \(f\left(1\right)=\left(1^2+1-1\right)^{2018}+\left(1^2-1+1\right)^{2018}-2=1+1-2=0\)

Qua hai kết quả trên ta suy ra f(x) có 2 nghiệm là 0 và 1 (2)

Từ (1) và (2) suy ra \(f\left(x\right)⋮g\left(x\right)\)(đpcm)

1 tháng 3 2020

\(P\left(x\right)=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+a\). đặt \(y=x^2+8x+9\)

Ta đc \(P\left(x\right)=\left(y-2\right)\left(y+6\right)+a=y^2+4y-12+a\)

Và Q(x)=y

Thực hiện phép chia P(x) cho Q(x) đc.... rút ra a=?( nếu a phải chia hết cho y)


1 tháng 3 2020

Giải cả ra cho dễ hiểu!

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

21 tháng 4 2019

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....