K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) −x2+6x−15=−(x2−6x+15)=−((x−3)2+6)−x2+6x−15=−(x2−6x+15)=−((x−3)2+6)

−(x−3)2−6−(x−3)2−6 ≤6<0∀x≤6<0∀x (đpcm)

b) (x−3).(1−x)−2=x−x2−3+3x−2=−x2+4x−5(x−3).(1−x)−2=x−x2−3+3x−2=−x2+4x−5

−(x2−4x+5)−(x2−4x+5) = −((x−2)2+1)=−(x−2)2−1≤−1<0∀x−((x−2)2+1)=−(x−2)2−1≤−1<0∀x (đpcm)

c) (x+4)(2−x)−10=2x−x2+8−4x−10(x+4)(2−x)−10=2x−x2+8−4x−10

−x2−2x−2=−(x2+2x+2)=−((x+1)2+1)=−(x+1)2−1≤−1<0∀x−x2−2x−2=−(x2+2x+2)=−((x+1)2+1)=−(x+1)2−1≤−1<0∀x(đpcm)

9 tháng 10 2021

a. -x^2+6x-15=-(x^2-6x+9)+9-15=-(x-3)^2-6<=-6<0
b. -9x^2+24x-18=-(9x^2-2.3.4x+16)+16-18=-93x-4)^2-x<=-2<0

24 tháng 10 2016

a, = 6x4+19x2+15

=6x4+9x2+10x2+15

=3x2(2x2+3)+5(2x2+3)

=(3x2+5)(2x2+3) Giải câu a vậy nha ok

24 tháng 10 2016

Bạn biết giải các câu còn lại ko??

5 tháng 8 2018

\(a,-x^2+6x-15=-\left(x^2-6x+9\right)-6=-\left(x-3\right)^2-6\le-6< 0\)

Vậy đa thức luôn âm với mọi x

\(b,-9x^2+24x-18=-9\left(x^2-\dfrac{8}{3}x+\dfrac{16}{9}\right)-2=-9\left(x-\dfrac{4}{3}\right)^2-2\le-2< 0\)

Vậy đa thức luôn âm với mọi x

\(c,\left(x-3\right)\left(1-x\right)-2=-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)

Vậy đa thức luôn âm với mọi x

\(d,\left(x+4\right)\left(2-x\right)-10=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1< 0\)

Vậy đa thức luôn âm với mọi x

5 tháng 8 2018

đề bài là tìm GTLN à bn

12 tháng 7 2018

\(A=4x^2-12x+11\)

\(A=4x^2-12x+9+2\)

\(A=\left(2x-3\right)^2+2\)

Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)

13 tháng 8 2018

a)

\(A=x^2-4x+18=\left(x^2-4x+4\right)+14=\left(x-2\right)^2+14\ge14>0\)

\(B=x^2-x+2=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{7}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)

\(C=x^2-2xy+2y^2-2y+15\)

\(C=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+14\)

\(C=\left(x-y\right)^2+\left(y-1\right)^2+14\ge14>0\)

\(A=x^2+2y^2-2xy-2y+15\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+14>14>0\)

Vậy : \(A>0\)

11 tháng 7 2018

\(4x^2-12x+11=\left(2x\right)^2-2.x.6+36-\) \(25\)

                                    =  \(\left(2x-6\right)^2-25>=-25\)

                                       

A đạt GTNN = -25 <=> \(\left(2x-6\right)^2=0\)

<=> \(x=3\)

các câu còn lại tương tự

11 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(a,A=4x^2-12x+11\)

\(A=4x^2-12x+9+2\)

\(A=\left(2x-3\right)^2+2\)

Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)

Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)

\(b,B=x^2-x+1\)

\(B=x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(B=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Nhận xét: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(minB=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

\(c,C=-x^2+6x-15\)

\(C=-\left(x^2-6x+15\right)\)

\(C=-\left(x^2-6x+4+11\right)\)

\(C=-\left[\left(x-2\right)^2+11\right]\)

\(C=-\left(x-2\right)^2-11\)

Nhận xét:  \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-11\le-11\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxC=-11\Leftrightarrow x=2\)

\(d,D=\left(x-3\right)\left(1-x\right)-2\)

\(D=x-x^2-3+3x-2\)

\(D=-x^2+4x-5\)

\(D=-\left(x^2-4x+5\right)\)

\(D=-\left(x^2-4x+4+1\right)\)

\(D=-\left[\left(x-2\right)^2+1\right]\)

\(D=-\left(x-2\right)^2-1\)

Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxD=-1\Leftrightarrow x=2\)

7 tháng 10 2015

a) x2-6x+10

=(x^2-6x+9)+1

=(x-3)^2+1

vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0

Hay x^2-6x+10>0