Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=4x^2+y^2+12x-4xy-6y+16\)
\(=\left(4x^2+y^2+9-4xy-6y+12x\right)+7\)
\(=\left[\left(2x\right)^2+y^2+3^2-2.2x.y-2.y.3+2.2x.3\right]+7\)
\(=\left(2x-y+3\right)^2+7\)
Ta có :
\(\left(2x-y+3\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(2x-y+3\right)^2+7\ge7>0\forall x,y\)
Hay B > 0 với mọi x,y
Ta có : \(B=\left(2x\right)^2-2.2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+y^2-6y+16\)
\(=\left(2x-y+3\right)^2-y^2+6y-9+y^2-6y+16\)
\(=\left(2x-y+3\right)^2+7\)
Vì \(\left(2x-y+3\right)^2\ge0\forall x,y\Rightarrow B\ge7\)
hay B > 0 với mọi x,y
a) Ta có:
\(x^2+4x+5\)
\(=x^2+2.x.2+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\forall x\)
b) Ta có:
\(x^2-x+1\)
\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
c) Ta có:
\(12x-4x^2-10\)
\(=-\left(4x^2-12x+10\right)\)
\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)
\(=-\left(2x-3\right)^2-1\)
Vì \(-\left(2x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)
\(\Rightarrow12x-4x^2-10< -1\)
A = 4x2 - 4xy + y2 + 12x -6y + 16
=(2x - y)2 + 6.(2x - y) + 16
a) \(x^2y+2xy+y=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)
b) \(4x^2-4xy-6y^2+6xy=4x\left(x-y\right)+6y\left(x-y\right)=\left(x-y\right)\left(4x+6y\right)\)
\(=2\left(x-y\right)\left(2x+3y\right)\)
c) \(18x^5y+18x^3y-2x^3y^5-2xy^5=18x^3y\left(x^2+1\right)-2xy^5\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(18x^3y-2xy^5\right)=2xy\left(x^2+1\right)\left(9x^2-y^4\right)=2xy\left(x^2+1\right)\left(3x-y^2\right)\left(3x+y^2\right)\)
d)
d) \(-12x^5-12x^3y-3xy^2+36x^4+36x^2y+9y^2=-3x\left(4x^4+4x^2y+y^2\right)+9y\left(4x^4+4x^2y+y^2\right)\)\(=\left(4x^4+4x^2y+y^2\right)\left(9-3x\right)\)
\(A=9x^2-6x+2=\left(3x\right)^2-2.3x+1+1=\left(3x-1\right)^2+1>0\forall x\)
Vậy ta có đpcm
\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1>0\forall x;y\)
Vậy ta có đpcm
a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)
(tự rút gọn cái :P)
b, \(8x^3+4x^2y-2xy^2-y^3\)
\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)
\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)
\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)
Mấy cái còn lại nhân tung ra là được mà :))))
a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)
BĐT đúng
b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
BĐT đúng
c)Dấu "=" ko xảy ra???
\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)
\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)
\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)
a. −x2 + 6x - 10
= −(x2 − 6x) − 10
= −(x2 − 2.x.3 + 32 − 9) − 10
= −(x − 3)2 + 9 − 10
= −(x − 3)2 −1
Vì (x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1
Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x
ta có
B=\(4x^2+y^2+9-4xy+12x-6y+7=\left(2x-y+3\right)^2+7>0\left(ĐPCM\right)\)
Ta có:
\(B=4x^2+y^2+12x-4xy-6y+16\)
\(\Leftrightarrow B=4x^2+y^2+9-4xy+12x-6y+7\)
\(\Leftrightarrow B=\left(2x-y+3\right)^2+7\)
Mà \(\left(2x-y+3\right)^2\ge0\Rightarrow\left(2x-y+3\right)^2+7>0\)