Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(b\ne d;b+d\ne0\) nên áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Vậy \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\) (đpcm)
Chúc bạn học tốt!!!
Ta có:Nếu
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
thì \((a+c)(b-d)=(a-c)(b+d)\)
\(a(b-d)+c(b-d)=a(b+d)-c(b+d)\)
\(ab-ad+bc-cd=ab+ad-bc+cd\)
\(=\)\(ab-ab\)\(-ad+ad\)\(+bc-bc\)\(-cd+cd\)
\(=0\)
\(\Leftrightarrow\left(a+c\right)\left(b-d\right)\)\(=\left(a-c\right)\left(b+d\right)\)
\(\Leftrightarrow\dfrac{a+c}{b+d}\)\(=\dfrac{a-c}{b-d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
Nếu:
\(\dfrac{a+b}{a}=\dfrac{c+d}{c}\Leftrightarrow c\left(a+b\right)=a\left(c+d\right)\)
\(ac+bc=ac+ad\)
\(bc=ad\)
\(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\rightarrowđpcm\)
Đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k
=> a=k.b ; c=k.d
Ta có :
\(\dfrac{a+b}{a}\)=\(\dfrac{b.k+b}{b}\)=\(\dfrac{b.\left(k+1\right)}{b}\)=k+1 ( 1 )
\(\dfrac{c+d}{c}\)=\(\dfrac{d.k+d}{d}\)=\(\dfrac{d.\left(k+1\right)}{d}\)=k+1 ( 2 )
Từ (1) và (2) thì : \(\dfrac{a+b}{a}\)=\(\dfrac{c+d}{c}\)
Đặt\(a+c=2b\left(1\right);2bd=c\left(b+d\right)\left(2\right)\\ \)
Thay (1) vào (2):\(\left(a+c\right)d=c\left(b+d\right)\)
Khai triển hết ra r rút gọn là ok.
Son Goku bạn giải hết ra giúp mik đi mik chậm hỉu lắm giúp mik đi mà!
đây là cậu chép trg chỗ giải đáp rồi mà mk ko đc lm giống trg giải đáp
a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)
\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)
= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)
= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)
\(\dfrac{51}{2.50}=\dfrac{51}{100}\)
Lời giải:
a)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)
Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)
Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)
b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:
\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)
\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)
\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)
\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)
\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
a) Có : AB=AC(tg ABC cân tại A)
BD=CE(gt)
=> AB+BD=AC+CE
=> AD=AE
=> Tg ADE cân tại A
\(\Rightarrow\widehat{D}=\widehat{E}=\frac{180^o-\widehat{A}}{2}\)
Lại có : \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)(tg ABC cân tại A)
\(\Rightarrow\widehat{D}=\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)
Mà chúng là 2 góc đồng vị
=> BC//DE
b) Có : \(\widehat{CBD}=180^o-\widehat{ABC}\)
\(\widehat{BCE}=180^o-\widehat{ACB}\)
Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)
\(\Rightarrow\widehat{CBD}=\widehat{BCE}\)
- Xét tg BCD và CBE có :
BD=CE(gt)
BC-cạnh chung
\(\widehat{CBD}=\widehat{BCE}\left(cmt\right)\)
=> Tg BCD=CBE(c.g.c)
=> BE=CD(đccm)
c) Có : \(\widehat{KBC}=\widehat{KCB}\)(tg BCD=CBE)
=> Tg KBC cân tại K
- Có : \(\widehat{KDE}=\widehat{ADE}-\widehat{ADC}\)
\(\widehat{KED}=\widehat{AED}-\widehat{AEB}\)
Mà : \(\widehat{AED}=\widehat{ADE}\)(tg ADE cân tại A)
\(\widehat{ADC}=\widehat{AEB}\)(tg BCD=CBE)
\(\Rightarrow\widehat{KED}=\widehat{KDE}\)
=> Tg KDE cân tại K
d) Xét tam giác ABK và ACK có :
AB=AC(tg ABC cân tại A)
AK-cạnh chung
KB=KC(tg KBC cân tại K)
=> Tg ABK=ACK(c.c.c)
=> \(\widehat{BAK}=\widehat{CAK}\)
=> AK là tia pg góc BAC
e) Không thấy rõ đề : DM và EN như thế nào so với BC?