Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\) ( đpcm )
Vậy với mọi \(x\inℕ^∗\) thì ta có công thức \(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
Chúc bạn học tốt ~
Có \(\frac{1}{x\left(x+1\right)}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
Vậy với mọi x \(\inℕ^∗\)ta luôn có \(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)( đpcm )
Chúc bạn học tốt!
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right).\left(3n+2\right)}=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right).\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{3n+2}{2.\left(3n+2\right)}-\frac{2}{2.\left(3n+4\right)}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}=\frac{n}{2.\left(3n+2\right)}\)
a ) Ta có : \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}\) \(=\frac{1}{n.\left(n+1\right)}\)
b ) Áp dụng công thức trên tính tổng này như sau :
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Chúc học giỏi !!!
a, \(VP=\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}\)
\(=\frac{1}{n\left(n+1\right)}=VT\RightarrowĐPCM\)
Bài 1:
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}\)\(=\frac{11}{48}\)
\(\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(x-1\right).x}\right)\)\(=\frac{11}{48}\)
\(\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x-1}-\frac{1}{x}\right)\)\(=\frac{11}{48}\)
\(\frac{1}{4.}.\left(1-\frac{1}{x}\right)=\frac{11}{48}\)
\(1-\frac{1}{x}=\frac{11}{48}:\frac{1}{4}\)
\(1-\frac{1}{x}=\frac{11}{12}\)
\(\frac{1}{x}=1-\frac{11}{12}\)
\(\frac{1}{x}=\frac{1}{12}\)
Vậy x= 12
Bài 2 :
Xét vế trái ta có :
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{\left(3n-1\right).\left(3n+2\right)}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\frac{1}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)
VẾ TRÁI ĐÚNG BẰNG VẾ PHẢI .ĐẲNG THỨC ĐÃ CHỨNG TỎ LÀ ĐÚNG
cHÚC BẠN HỌC TỐT ( -_- )
\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)\cdot2x}=\frac{1}{8}\left(x\inℕ;x\ge2\right)\)
Đặt \(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)2x}\)
\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left(2x-2\right)2x}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2x-2}-\frac{1}{2x}\)
\(2A=\frac{1}{2}-\frac{1}{2x}=\frac{x-1}{2x}\)
\(\Rightarrow A=\frac{x-1}{2x}:2=\frac{x-1}{2x}\cdot\frac{1}{2}=\frac{x-1}{4x}\)
Mà \(A=\frac{1}{8}\Rightarrow\frac{x-1}{4}=\frac{1}{8}\)
\(\Leftrightarrow8x-8=4\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\frac{12}{8}=\frac{3}{2}\left(ktm\right)\)
Vậy không có x thỏa mãn yêu cầu đề bài
Để mình đưa công thức tổng quát luôn khỏi mất công bạn đăng câu hỏi cho mệt =.=
Với mọi \(a,n\inℕ^∗\)
Cần chứng minh :
\(\frac{n}{a\left(a+n\right)}=\frac{1}{a}-\frac{1}{a+n}\)
Ta có :
\(\frac{1}{a}-\frac{1}{a+n}=\frac{a+n}{a\left(a+n\right)}-\frac{a}{a\left(a+n\right)}=\frac{a+n-a}{a\left(a+n\right)}=\frac{n}{a\left(a+n\right)}\) ( đpcm )
Vậy với mọi \(a,n\inℕ^∗\) thì \(\frac{n}{a\left(a+n\right)}=\frac{1}{a}-\frac{1}{a+n}\)
Chúc bạn học tốt ~
Ta có :
\(\frac{1}{x}-\frac{1}{x+2}=\frac{x+2}{x\left(x+2\right)}-\frac{x}{x\left(x+2\right)}=\frac{x+2-x}{x\left(x+2\right)}=\frac{2}{x\left(x+2\right)}\) ( đpcm )
Vậy với mọi \(x\inℕ^∗\) ta luôn có \(\frac{2}{x\left(x+2\right)}=\frac{1}{x}-\frac{1}{x+2}\)
Chúc bạn học tốt ~