Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn Tiến dũng trương giải tào lao quá, không biết làm thì đừng cmt linh tinh nhé!
19 là số nguyên tố thì \(19^n\)làm sao chia hết cho 44 được
Giải: CHÚ Ý: mình dùng dấu = cho mod vì không gõ được
Ta có: \(19^5\)=-1 (mod 44) => \(19^{19}=\left(-1\right)^3.19^4=-37=7\left(mod44\right)\)
\(69^5=11\left(mod44\right)\Rightarrow69^{69}=1^{13}.69^4=37\left(mod44\right)\)
=> \(19^{19}+69^{69}=7+37=0\left(mod44\right)\)
vậy chia hết cho 44
Cách 2:
Ta có: \(A=69^{69}+19^{19}=\left(69^{69}+19^{69}\right)-\left(19^{69}-19^{19}\right)\)
Ta có: \(69^{69}+19^{69}⋮\left(19+69\right)\Rightarrow69^{69}+19^{69}⋮44\)
Phải CM \(19^{69}-19^{19}⋮44\), Thật vậy
\(B=19^{19}\left(19^{50}-1\right)\)
do 19 lẻ nên \(19^2=1\left(mod4\right)\)\(\Rightarrow19^{50}=1\left(mod4\right)\Rightarrow19^{50}-1⋮4\)
Có: \(19^{50}=8^{50}\left(mod11\right)\)mà
\(8^5=1\left(mod11\right)\Rightarrow8^{50}=1\left(mod11\right)\Leftrightarrow19^{50}=1\left(mod11\right)\Rightarrow19^{50}-1⋮11\)
Mà (4,11)=1
=> \(19^{69}-19^{19}⋮44\)
=> A chia hết cho 44 (ĐPCM)
(19^9) mod 44=0 suy ra 19^19 chia het cho 44
(69^6) mod 44=0 suy ra 69^69 chia het cho 44
suy ra .....19^19+69^69 chia het cho 44
a,
8^5 = (2³)^5 = 2^15
<=> 2^15+2^11 = (2^11)[(2^4)+1]
= (2^11)17 chia hết 17
b,
69(69 -5) = (69).(64)
64=(32).2
<=> 69^2-69.5 là bội số của 64, mà 64 là bội số của 32, nên chia hết cho 32
c,
Ta có : 328^3 + 172^3 = ( 328 + 172 )( 328^2 - 328 . 172 + 172^2 )
= 500 . [ (2 . 191 )^2 - 382 . 4 . 43 + ( 2 . 86 )^2 ]
= 500 . [ 4 . 191^2 - 4 . 382 . 43 + 4 . 86^2 ]
= 2000 . ( 191^2 - 382 . 43 + 86^2 )
Vì 2000 chia hết cho 2000 nên 2000 . ( 191^2 - 382 . 43 + 86^2 ) chia hết cho 2000 (đpcm)
d,
Ta có a^n + b^n =(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ
19^19 + 69^19 = (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44
a: \(P=3^3\left(123^3-73^3\right)\)
\(=3\cdot9\cdot\left(123-73\right)\cdot A=1350\cdot A\cdot3⋮1350\)
b: \(=4^3\left(93^4+32^4\right)\)
\(=4^3\left(93+32\right)\cdot A=125\cdot64\cdot A=8000\cdot A⋮8000\)
a) \(\left(27x^2+a\right):\left(3x+2\right)\) được thương là 9x -16 và dư a + 12
Để \(\left(27x^2+a\right)⋮\left(3x+2\right)\) thì số dư phải bằng 0
=> a + 12 = 0
=> a = -12
Bài b và c tham khảo cách làm tương tự ở đây
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(69^2-69.5=69.69-69.5=69.\left(69-5\right)=69.64=69.2.32\)
a: \(=\left(328+172\right)\left(328^2+328\cdot172+172^2\right)\)
\(=5000\cdot4\left(26896+328\cdot43+7396\right)⋮20000\)
b: \(=69\left(69-5\right)=69\cdot64⋮32\)