\(1,C=5x^4-7x^2+4xy+y^2\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

\(M+N=3x^2-5y^3+2x^2+y^3-1\)

\(=\left(3x^2+2x^2\right)+\left(-5y^3+y^3\right)-1\)

\(=5x^3-4y^3-1\)

\(M-N=3x^2-5y^3-2x^2-y^3+1\)

\(=\left(3x^2-2x^2\right)+\left(-5y^3-y^3\right)+1\)

\(=x^2-6y^3+1\)

12 tháng 4 2018

a) Thay x= -2 vào biểu thức trên ta có:

5.(-2)2 - 3.(-2) + 4.(-2) -16

= 5.4 + 6 - 8 - 16

=20 + 6 - 8 - 16

= 2

Ý a nka bn các ý cn lại cũng v thui

Ý d rút luỹ thừa bậc 2 ra ngoài còn xy2 nha!!!haha

12 tháng 4 2018

a/ Thay vào biểu thức tại x= -2, ta được:

5x2 - 3x + 4x - 16

= 5. (-2)2 - 3. (-2) + 4. (-2) - 16

= 20 - (-6) + (-8) - 16

= 2

Tớ làm câu a/ thôi rồi bạn tự làm đi nhé! dễ thôi mà.haha

a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)

\(=-2x^4y^3+4x^3y^4-10x^2y^5\)

b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)

\(=-2x^4+6x^3+2x^2-2x\)

c) Ta có: \(3x^2\left(2x^3-x+5\right)\)

\(=6x^5-3x^3+15x^2\)

d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)

\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)

e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)

\(=-4x^3y^2+8x^2y^2-12x^2y\)

f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)

\(=4x^3y^2+3x^2y^2-5x^3y\)

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi

24 tháng 7 2017

mn ơi giúp nhé

6 tháng 8 2019

\(3x^2-2x-8=0\\ \Leftrightarrow3x^2-2x=8\\ E=6x^2-4x+9\\ =3x^2+3x^2-2x-2x-8+17\\ =\left(3x^2-2x-8\right)+\left(3x^2-2x+17\right)\\ =3x^2-2x+17\\ =\left(3x^2-2x\right)+17=8+17=25\)

6 tháng 8 2019

\(x+y=0\\ \Leftrightarrow y=-x\\ D=x^4-y^4+x^3y-xy^3\\ =\left(x^2+y^2\right)\left(x^2-y^2\right)+xy\left(x^2-y^2\right)\\ =\left(x^2+y^2+xy\right)\left(x^2-y^2\right)\\ =\left(x^2+\left(-x\right)^2+x.\left(-x\right)\right)\left(x^2-\left(-x\right)^2\right)\\ =\left(x^2+x^2-x^2\right)\left(x^2-x^2\right)\\ =x^2.0=0\)