\(\ge\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

ta có định lý tổng hai cạnh trong tam giác luôn luôn lớn hớn cạnh còn lại

nếu cạnh lớn nhất đó lớn hơn một nửa chu vi thì nó sẽ lớn hơn cả tổng hai cạnh còn lại và như thế là sai với định lý

b) cạnh lớn nhất là cạnh lớn hơn hai cạnh còn lại hoặc bằng một hoặc cả hai canhj còn lai

giả sử cạnh đó nhỏ hơn 1 nửa chu vi thì tổng hai cạnh còn lại lớn hơn 2 phần 3 chu vi và chắc chắn nó sẽ lớn hơn cạnh lớn nhất ( vô lí)

suy ra cạnh lớn nhất phải lớn hơn hoặc bằng 1 phần 3 chu vi

23 tháng 11 2017

Bạn vào câu hỏi tương tự khác có

27 tháng 5 2015

A B C K G E M D

Xét tam giác ABC như hình vẽ. ta cần chứng minh: \(\frac{3}{4}\)(AB + BC + CA) < AM + BD + CE < AB + BC + CA

*) Chứng minh: AM + BD + CE < AB + BC + CA

+) Trên tia đối của tia MA lấy K sao cho MA = MK 

Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC

+) Xét  tam giác ABK có: AK < AB +BK   mà AK = 2.AM ; BK = AC

=> 2.AM < AB + AC          (1)

Tương tự, ta có: 2.BD < AB + BC  (2)

                        2.CE < AC + BC   (3)

Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA)

=> AM + BD + CE < AB + BC + CA

*) Chứng minh:  \(\frac{3}{4}\)(AB + BC + CA) < AM + BD + CE 

+) Xét tam giác AGB có: AG + GB > AB

mà AG = \(\frac{2}{3}\).AM ; BG = \(\frac{2}{3}\).BD (do G là trong tâm tam giác ABC)

=> \(\frac{2}{3}\).(AM + BD) > AB

+) Tương tự, ta có: \(\frac{2}{3}\)(AM + CE) > AC; \(\frac{2}{3}\)(BD + CE) > BC

=> \(\frac{2}{3}\).2. (AM + BD + CE) > AB + BC + CA

<=> \(\frac{4}{3}\) (AM + BD + CE) > AB + BC + CA

=> AM + BD + CE > \(\frac{3}{4}\)(AB + BC + CA)

=> ĐPCM

Xét tam giác ABC như hình vẽ. ta cần chứng minh:  4 3 (AB + BC + CA) < AM + BD + CE < AB + BC + CA *) Chứng minh: AM + BD + CE < AB + BC + CA +) Trên tia đối của tia MA lấy K sao cho MA = MK  Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC +) Xét  tam giác ABK có: AK < AB +BK   mà AK = 2.AM ; BK = AC => 2.AM < AB + AC          (1) Tương tự, ta có: 2.BD < AB + BC  (2)                         2.CE < AC + BC   (3) Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA) => AM + BD + CE < AB + BC + CA *) Chứng minh:   4 3 (AB + BC + CA) < AM + BD + CE  +) Xét tam giác AGB có: AG + GB > AB mà AG =  3 2 .AM ; BG =  3 2 .BD (do G là trong tâm tam giác ABC) =>  3 2 .(AM + BD) > AB +) Tương tự, ta có:  3 2 (AM + CE) > AC;  3 2 (BD + CE) > BC =>  3 2 .2. (AM + BD + CE) > AB + BC + CA <=>  3 4  (AM + BD + CE) > AB + BC + CA => AM + BD + CE >  4 3 (AB + BC + CA) => ĐPC

5 tháng 8 2016

Bạn tự vẽ hình nha

Xét tg ABC có các đường trung tuyến AM, BD, CE. Đặt BC= a; AC= c. Theo bài ra ta có: AM< \(\frac{b+c}{2}\) 

CMTT: BD< \(\frac{a+c}{2}\) ; CE < \(\frac{a+b}{2}\) 

Suy ra AM+BD+CE < a+b+c

Ta có BD+CE> \(\frac{3}{2}\) a

CMTT ta có:AM+CE > \(\frac{3}{2}\) b

                    AM+BD> \(\frac{3}{2}\) c

Suy ra 2(AM+BD+CE) > \(\frac{3}{2}\) ( a+c+c)

Do đó : AM+BD+CE > \(\frac{3}{4}\) ( a+b+c )

5 tháng 8 2016

*) Chứng minh: AM + BD + CE < AB + BC + CA

+) Trên tia đối của tia MA lấy K sao cho MÃ = MK

Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC

+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC

=> 2.AM < AB + AC

Tương tự, ta có: 2.BD < AB + BC

2.CE < AC + BC

Cộng từng vế của

=> 2.(AM + BD + CE) < 2. (AB + BC + CA)

=> ÂM + BD + CÉ < AB + BC + CA

*) Chứng minh:

(AB + BC + CA) < AM + BD + CE

+) Xét tam giác AGB có: AG + GB > AB

mà AG = .AM ; BG = .BD (do G là trong tâm tam giác ABC)

.(AM + BD) > AB

+) Tương tự, ta có: 2/3

(AM + CE) > AC; 2/3

(BD + CE) > BC

=> 2/3.2. (AM + BD + CE) > AB + BC + CA

​<=> (ÂM + BD + CE) > AB + BC + CA

=> AM + BD + CE > (AB + BC + CA)

=> ĐPCM 

 

28 tháng 12 2015

Xét tam giác ABC có các đường trung tuyến AM,BD,CE
Gọi G là trọng tâm

*) Chứng minh: AM + BD + CE < AB + BC + CA

+) Trên tia đối của tia MA lấy K sao cho MA = MK

Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC

+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC

=> 2.AM < AB + AC (1)

Tương tự, ta có: 2.BD < AB + BC (2)

2.CE < AC + BC (3)

Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA)

=> AM + BD + CE < AB + BC + CA

*) Chứng minh: 3/4 (AB + BC + CA) < AM + BD + CE

+) Xét tam giác AGB có: AG + GB > AB

mà AG = 2/3 .AM ; BG = 2/3 .BD (do G là trong tâm tam giác ABC)

=> 2/3 .(AM + BD) > AB

+) Tương tự, ta có: 2/3 (AM + CE) > AC; 2/3 (BD + CE) > BC

=> 2/3 .2. (AM + BD + CE) > AB + BC + CA

<=> 4/3  (AM + BD + CE) > AB + BC + CA

=> AM + BD + CE > 3/4 (AB + BC + CA)

=> ĐPCM

Dạng này hình như lớp 8 mà bạn

28 tháng 12 2015

bạn zô đây cô loan chỉ tường tận luôn nè http://olm.vn/hoi-dap/question/94245.html

Chụy @Trần Thị Trúc Linh ơi! làm hộ em bài này cái

kuroba kaitoNhã DoanhngonhuminhPhạm Nguyễn Tất Đạt

6 tháng 7 2019

B M I A C

a) Ta lần lượt xét:

  • Trong \(\Delta AMI\), ta có:

                              \(MA< IA+IM\Leftrightarrow MA+MB< IA+IM+MB\)

                             \(\Leftrightarrow MA+MB< IA+IB\)                (1)

  • Trong \(\Delta BIC\),ta có:

                              \(IB< CI+CB\Leftrightarrow IA+IB< IA+CI+CB\)

                              \(\Leftrightarrow IA+IB< CA+CB\)                 (2)

Từ (1), (2), ta nhận được  \(MA+MB< IA+IB< CA+CB,đpcm\)

b) Ta lần lượt xét:

  • Trong \(\Delta MAB\), ta có \(MA+MB>AB\left(3\right)\)
  • Trong \(\Delta MBC\), ta có \(MB+MC>BC\left(4\right)\)
  • Trong \(\Delta MAC,\)ta có \(MA+MC>AC\left(5\right)\)

Cộng theo vế (3),(4),(5), ta được:

\(2\left(MA+MB+MC\right)>AB+BC+AC\)

\(\Leftrightarrow MA+MB+MC>\frac{1}{2}\left(AB+BC+AC\right),đpcm.\)

Mặt khác dựa theo kết quả cua câu a), ta có:

\(MA+MB< CA+CB\left(6\right)\)

\(MB+MC< AB+AC\left(7\right)\)

\(MA+MC< BA+BC\left(8\right)\)

Cộng theo vế (6),(7),(8), ta được:

\(2\left(MA+MB+MC\right)< 2\left(AB+BC+AC\right)\)

\(\Leftrightarrow MA+MB+MC< AB+BC+AC,đpcm.\)