K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

Giả sử \(\sqrt{5}\in Q\)

\(\Rightarrow\sqrt{5}=\frac{m}{n}\left(m;n\in Z;n\ne0\right);\left(\left|m\right|;\left|n\right|\right)=1\)

\(\Rightarrow\frac{m^2}{n^2}=5\)

=> m2 = n2.5

Giả sử k là ước nguyên tố của m \(\Rightarrow n^2⋮k\)

Mà k nguyên tố nên \(n⋮k\)

=> ƯCLN(|m|; |n|) = k \(\ne1\)

=> điều giả sử là sai

=> \(\sqrt{5}\notin Q\left(đpcm\right)\)

a: Đúng

b: Sai

c: Sai

d: Đúng

e: Đúng

g: Sai

h: Sai

i: đúng

k: Sai

l: Sai

7 tháng 9 2016
  1. Giả sử rằng  là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a /b = .
  2. Như vậy  có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.
  3. Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.
  4. Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)
  5. Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).
  6. Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.
  7. Thay (6) vào (3) ta có: (2k)2 = 2b2  4k2 = 2b2  2k2 = b2.
  8. Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).
  9. Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).

Từ mâu thuẫn trên suy ra: thừa nhận  là một số hữu tỉ là sai và phải kết luận  là số vô tỉ.

Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."

7 tháng 9 2016
  1. Giả sử rằng  là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a /b = .
  2. Như vậy  có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.
  3. Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.
  4. Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)
  5. Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).
  6. Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.
  7. Thay (6) vào (3) ta có: (2k)2 = 2b2  4k2 = 2b2  2k2 = b2.
  8. Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).
  9. Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).

Từ mâu thuẫn trên suy ra: thừa nhận  là một số hữu tỉ là sai và phải kết luận  là số vô tỉ.

Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."

tích mik nha

13 tháng 8 2015

Giả sử n = a. b (1 < a, b < n )

Nếu cả a và b đều lớn hơn căn bậc 2 của n thì n = ab > n (vô lý) như vậy phải có một thừa số không vượt quá căn bậc 2 của n hay có ước nguyên tố không vượt quá căn bậc 2 của n

Vì mk ko biết viết dấu căn bậc nên mk thay bằng chữ, mong bạn thông cảm nha !

17 tháng 11 2015

nếu bạn **** mình mình sẽ giải tận tình cho bạn

DD
9 tháng 10 2021

Với \(a,b>0;a\ne b\)ta có: 

 \(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow2\left(a+b\right)>\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}< \sqrt{2\left(a+b\right)}\)

Áp dụng ta được: 

\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< \sqrt{2\left(2+6\right)}+\sqrt{2\left(12+20\right)}\)

\(=\sqrt{16}+\sqrt{64}=4+8=12\)

Ta có đpcm. 

25 tháng 1 2020

b) \(\sqrt{2x-3}-7=4\)

             \(\sqrt{2x-3}=11\)

     \(\left(\sqrt{2x-3}\right)^2=11^2\)

                   \(2x-3=121\)

                            \(2x=124\)

                              \(x=62\)

c) \(\sqrt{3x-2}+7=0\)

             \(\sqrt{3x-2}=-7\)

                          \(\Rightarrow x=\varnothing\)

29 tháng 1 2020

bạn Hoàng Thanh Huyền ơi! cảm ơn đã là giúp nhưng phần a) bạn làm đến dong thứ 3 thì mk bt làm r nhưng mũ 2 phải chia ra hai trường hợp chứ :))

AH
Akai Haruma
Giáo viên
31 tháng 7 2024

Lời giải:
Giả sử $\sqrt{7}\in\mathbb{Q}$. Đặt $\sqrt{7}=\frac{a}{b}$ với $a,b$ nguyên, $b\neq 0$, $(a,b)=1$.

Ta có:

$7=\frac{a^2}{b^2}$

$\Rightarrow a^2=7b^2\vdots 7\Rightarow a\vdots 7\Rightarrow a^2\vdots 49$

$\Rightarrow 7b^2=a^2\vdots 49\Rightarrow b^2\vdots 7$

$\Rightarrow b\vdots 7$

Vậy $7=ƯC(a,b)$ (trái với điều kiện $(a,b)=1$)

Do đó điều giả sử là sai. Tức là $\sqrt{7}$ là số vô tỉ.

4 tháng 11 2017

Giả sử căn a là một số hữu tỉ
=> \(\sqrt{a}=\dfrac{p}{q}\) , với (p,q)=1
=> \(a=\left(\dfrac{p}{q}\right)^2\)
=> \(a=\dfrac{p^2}{q^2}\)
=> \(a.q^2=p^2\)
=> a là số chính phương ( mâu thuẫn với đề bài a không là số chính phương)
do đó điều giả sử là sai
Vậy nếu a không là số chính phương thì căn n là số vô tỉ

Giả sử √a là số hữu tỉ .

Đặt √a=xy [x;y∈N,y≠0(x;y)=1]

⇒a=x2/y2⇒a⋅y2=x2

Vì x2 là 1 số chính phương nên a.y2 viết được dưới dạng tích của các số với lũy thừa bằng 2

Mà x; y nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)

=> Giả thiết này sai

=>√a là 1 số vô tỉ