Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d\inƯ\left(n+15;n+72\right)\) ( \(d\in N,d\ne0\))
\(\Rightarrow n+15⋮d\)
\(n+72⋮d\)
\(\Rightarrow\left(n+72\right)-\left(n+15\right)⋮d\)
\(\Rightarrow57⋮d\)
\(\Rightarrow d=1;3;19;57\) để n + 15 và n + 72 là hai số nguyên tố cùng nhau thì n khác dạng 19k + 15
Vậy có vô số giá trị n
Chiều dài căn phòng sau khi tăng là:
7+2/7.7=9(m)
Chiều rộng căn phòng ban đầu là:
45/9=5(m)
Tỉ số giữa chiều dài và chiều rộng ban đầu của căn phòng là:
7/5=1,4
Vậy............................................................
Chúc bạn học tốt !
sao phải nhân 7 ở lời giải thứ nhát z bạn Trần Minh Hưng
Gọi diện tích các hình vuông được tô lần 1,2,3,...,n,... lần lượt là
Khi đó diện ta tính được
Vậy tối thiểu An phải tô đến hình vuông thứ 5 thì diện tích của hình vuông được tô nhỏ hơn 1 1000
Chọn C.
Đáp án C
Chọn đáp án C vì dãy ở đây là một CSN có công bội q = 3 2 > 1 , nên dãy 3 2 , 9 4 , 27 8 , . . . , 3 2 n không phải là dãy lùi vô hạn
Đáp án D.
Cách 1: Tư duy tự luận
z = − 25 = 25. − 1 = 25 i 2 → z 1,2 = ± 5 i
Cách 2: Sử dụng máy tính cầm tay
Vậy các căn bậc hai của số phức z là z 1,2 = ± 5 i
Đáp án C
Phương pháp:
Phương trình bậc nhất đối với sin và cosasinx + bcosx = c vô nghiệm
Cách giải: Phương trình sinx + (m+1)cosx = 2 vô nghiệm
Gỉa sử \(\sqrt{15}\) là số hữu tỉ
=> \(\sqrt{15}=\frac{m}{n}\)( trong đó \(\frac{m}{n}\) là phân số tối giản)=> \(15=\frac{m^2}{n^2}\) hay \(15n^2=m^2\)(1)
Từ (1) => \(m^2\) chia hết cho 15 => m chia hết 15
Đặt m=15k( \(k\in Z\))=> \(m^2=225k^2\)(2)
Tứ (1);(2)=> \(15n^2=225k^2\)=> \(n^2=15k^2\)(3)
Từ (3) => \(n^2\)chia hết cho 15 => n chia hết cho 15
=> \(\frac{m}{n}\)không phải là phân số tối giản trái với giả thiết => \(\sqrt{15}\)không phải là số hửu tỉ
Vậy \(\sqrt{15}\)là số vô tỉ(dpcm)
Giả sử \(\sqrt{7}\) là số hữu tỉ, như vậy có thể viết dưới dạng phân số tối giản \({m\over n}\) tức là \(\sqrt{7} = {m \over n}\) . Suy ra \(7={m^2 \over n^2}\) hay \(7m^2=n^2\) (1)
Đảng thức (1) chứng tỏ \(m^2\vdots7\) mà 7 là số nguyên tố nên \(m\vdots7\) .
Đặt\(m=7k\) (k∈ℤ) ta có \(m^2=49k^2\) (2)
Từ (1) và (2) suy ra \(7n^2=49k^2\) nên \(n^2=7k^2\) (3)
Từ (3) ta lại có \(n^2\vdots7\) và vì 7 là số nguyên tố nên \(n\vdots7\) .
Như vậy m và n cùng chia hết cho 7 nên phân số \({m \over n}\) không tối giản, trái với giả thiết. Vậy \(\sqrt{7}\) không phải là số hữu tỉ, do đó \(\sqrt7\) là số vô tỉ