Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{3n}{3n+1}\)
Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z
\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1
\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản
Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )
b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)
Đề bài sai
Các câu c,d,e,g,h tương tự
Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1
Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1
câu c nhá bn
gọi d là ƯCLN(2n+1;3n+2),theo đề ra ta cs:
2n+1 chia hết cho d =>6n+3 chia hết cho d
3n+2 chia hết cho d=> 6n+4 chia hết cho d
=> 1 chia hết cho d=>d=1
vậy....
a) Gọi ƯCLN(n + 1 ; 2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
b) Gọi ƯCLN (2n + 1 ; 3n + 2) = d
=> \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\Rightarrow6n+4-\left(6n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> 2n + 1 ; 3n + 2 là 2 số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\)là phân số tối giản
c) Gọi ƯCLN(14n + 3; 21n + 5) = d
Ta có : \(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\Rightarrow\left(42n+10\right)-\left(42n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> 14n + 3 ; 21n + 5 là 2 số nguyên tố cùng nhau
=> \(\frac{14n+3}{21n+5}\) là phân số tối giản
d) Gọi ƯCLN(25n + 7 ; 15n + 4) = d
=> \(\hept{\begin{cases}25n+7⋮d\\15n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(25n+7\right)⋮d\\10\left(15n+4\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}150n+42⋮d\\150n+40⋮d\end{cases}}\Rightarrow\left(150n+42\right)-\left(150n+40\right)⋮d\Rightarrow2⋮d\)
=> \(d\in\left\{1;2\right\}\)
Nếu n lẻ => 2n + 7 chẵn ; 15n + 4 lẻ
=> ƯCLN(2n + 7 ; 5n + 4) = 1
Nếu n chẵn => 25n + 7 lẻ ; 15n + 4 chẵn
=> ƯCLN(2n + 1 ; 15n + 4) = 1
=> d khái 2 <=> d = 1
=> \(\frac{2n+7}{15n+4}\)là phân số tối giản
a, Bạn tham khảo tại đây nhé : https://olm.vn/hoi-dap/question/62013.html
b, Gọi d là ƯCLN(tử;mẫu)
=> \(\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}}\)=> \(\hept{\begin{cases}3\left(14n+17\right)⋮d\\2\left(21n+25\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}\)
Hay \(4n+51-42n-50⋮d\)
=> \(1⋮d\)
Hay ƯCLN(tử;mẫu)=1 Vậy phân số trên là p/s tối giản.
a,
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
a) Gọi d là ƯCLN(n, n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n,n+1\right)=1\)
\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.
b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.
c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)
\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.
d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)
\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.
a, Gọi UCLN ( 12n + 1 và 30n + 2 ) là d
=> 12n + 1 chia hết cho d
30n + 2 chia hết cho d
Ta có :
12n + 1 = 5 ( 12n + 1 ) = 60n + 5 chia hết cho d
30n + 2 = 2 ( 30n + 2 ) + 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
= 1 chia hết cho d
=) d = 1
=) \(\frac{12n+1}{30n+2}\)là phân số tối giản
Vậy ...
Phần b làm tương tự ~~
Bài 2:
a)Gọi UCLN(14n+3;21n+4) là d
Ta có:
[3(14n+3)]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1. Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
b)Gọi UCLN(12n+1;30n+2) là d
Ta có:
[5(12n+1)]-[2(30n+2)] chia hết d
=>[60n+5]-[60n+4] chia hết d
=>1 chia hết d. Suy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
c)Gọi UCLN(3n-2;4n-3) là d
Ta có:
[4(3n-2)]-[3(4n-3)] chia hết d
=>[12n-8]-[12n-9] chia hết d
=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
d)Gọi UCLN(4n+1;6n+1) là d
Ta có:
[3(4n+1)]-[2(6n+1)] chia hết d
=>[12n+3]-[12n+2] chia hết d
=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
a. Để a tối giản thì UCLN của 12n+1 và 30n+2 là 1
Gọi UCLN của 12n+1 và 30n+2 là d
Ta có
\(12n+1⋮d;30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)=\left(60n+5\right)-\left(60n+4\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy A là phân số tối giản
b
Gọi UCLN của 14n+17 và 21n+25 là d
Ta có
\(14n+17⋮d;21n+25⋮d\)
\(\Rightarrow3\left(14n+17\right)-2\left(21n+25\right)=\left(42n+51\right)-\left(42n+50\right)=1⋮d\)
\(\Rightarrow d=1\)
vậy B là phân số tối giản
Từ đây mik rút ra công thức tổng quát nhé!
Nếu chỉ cần tìm được các số tự nhiên a, b, c, e, g sao cho
\(\left|a\left(bn+c\right)-d\left(en+g\right)=1\right|\)
Tức là \(ab=de;\left|ac-dg\right|=1\)Thì
Chúng ta sẽ có \(\frac{bn+c}{en+g}\)và\(\frac{en+g}{bn+c}\)là các phân số tối giản