\(\frac{12n+1}{30n+2}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2015

Đặt UCLN(12n + 1 ; 30n + 2) = d

12n + 1 chia hết cho d => 60n + 5 chia hết cho d

30n + 2 chia hết cho d =>  60n + 4 chia hết cho d

UCLN(60n + 5 ; 60n + 4) = 1

=> d = 1

Vậy 12n + 1 / 30n + 2 luôn tối giản 

26 tháng 12 2015

Đặt d là ƯCLN(12n+1,30n+2)=>12n+1,30n+2 đều chia hết cho d=>60n+5 và 60n+4 chia hết cho d.Vì vậy nên ta có:

(60n+5)-(60n+4) chia hết cho d

=60n+5-60n-4 chia hết cho d

 =1 chia hết cho d

=> d=1

Vì d=1 nên 12n+1,30n+2 là 2 số nguyên tố cùng nhau=>phân số trên là phân số tối giản(đpcm)

\(A=\frac{12n+1}{30n+2}\)

Gọi d là ƯC ( 12n+1 ; 30n+2 )

Ta có :

\(12n+1⋮d\)\(30n+2⋮d\)

\(\Rightarrow12n+1-30n+2⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+5-50n+4⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d\in\pm1\)

Kết luận : Vậy A là phân số tối giản với moin số nguyên n

19 tháng 4 2021

Gọi d là ước chung lớn nhất của 12n+1 và 30n+2

=>(12n+1)chia hết cho d

=>(30n+2) chia hết cho d

=>5(12n+1) - 2(30n+2) chia hết cho d

=>(60n+5) - (60n+4) chia hết cho d

=>              1 chia hết cho d

=>                    1=d

Vậy \(\frac{12n+1}{30n+2}\)tối giản với mọi P/s

26 tháng 4 2016

Tôi giải đúng ko các cậu?

Gọi d = ƯC (12n +1;30n +2).

      Ta có:  (12n +1) chia hết cho  d  và (30n + 2) chia hết cho  d  =>

5(12n +1)  chia hết cho d  và 2(30n + 2) chia hết cho  d

[5(12n +1) – 2(30n +2)]  chia hết cho d  =>  1 chia hết cho  d  => d =   ±  1

=>$ \frac{12n+1}{30n+2}$ là phân số tối giản (n  N*)

26 tháng 4 2016

Gọi d = ƯC (12n +1;30n +2).

      Ta có:  (12n +1) chia hết cho  d  và (30n + 2) chia hết cho  d  =>

5(12n +1)  chia hết cho d  và 2(30n + 2) chia hết cho  d

[5(12n +1) – 2(30n +2)]  chia hết cho d  =>  1 chia hết cho  d  => d =   ±  1

=>$ \frac{12n+1}{30n+2}$ là phân số tối giản (n  N*)

22 tháng 8 2015

b) d = ƯCLN (21n + 4; 14n + 3)

=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d

=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d

=> 42n + 8 và 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1

=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản

a) d= ƯCLN (3n + 1; 5n + 2)

=> 5n + 2 chia hết cho d và 3n + 1 chia hết cho d

=> 3. (5n + 2) chia hết cho d và 5. (3n + 1) chia hết cho d

=> 15n + 6 và 15n + 5 chia hết cho d

=> (15n + 6) - (15n + 5) = 1 chia hết cho d => d = 1

=> 3n + 1 và 5n + 2 nguyên tố cùng nhau => PS đã cho tối giản

22 tháng 8 2015

b) d = ƯCLN (21n + 4; 14n + 3)

=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d

=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d

=> 42n + 8 và 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1

=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản

 

10 tháng 6 2017

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d 

<=> 5(12n + 1) chia hết cho d  , 2(30n + 2) chia hết cho d 

<=> 60n + 5 chia hết cho d  , 60n + 4 chia hết cho d 

=> (60n + 5) - (60n + 4) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 

Vậy ƯCLN của 12n + 1 và 30n + 2 = 1

Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)

10 tháng 6 2017

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d

<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d

<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ƯCLN của 12n +1 và 30n +2 = 1

Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)  .

Chúc bạn học tốt !

16 tháng 3 2018

Giải từng bài 

Bài 1 : 

Ta có : 

\(\frac{23+n}{40+n}=\frac{3}{4}\)

\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)

\(\Leftrightarrow\)\(92+4n=120+3n\)

\(\Leftrightarrow\)\(4n-3n=120-92\)

\(\Leftrightarrow\)\(n=28\)

Vậy số cần tìm là \(n=28\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

Bài 2 : 

\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)

Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n 

Chúc bạn học tốt ~ 

25 tháng 2 2016

Gọi d là ƯC ( 30n + 1 ; 15n + 2 )

=> 30n + 1 ⋮ d => 2.( 30n + 1 ) ⋮ d

=> 15n + 2 ⋮ d => 4.( 15n + 2 ) ⋮ d

=> [ 2.( 30n + 1 ) - 4.( 15n + 2 ) ] ⋮ d

=> [ ( 60n + 2 ) - ( 60n + 8 ) ] ⋮ d

=> - 6 ⋮ d => d = { - 6 ; - 1 ; 1 ; 6 }

Vì ƯC ( 30n + 1 ; 15n + 2 ) = { - 6 ; - 1 ; 1 ; 6 } nên 30n + 1 / 15n + 2 không là p/s tối giản

10 tháng 2 2016

Gọi d là ƯCLN ( 12n + 1; 30n + 2 )

=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )

=> 20n + 2 ⋮ d => 2.( 30n + 3 ) ⋮ d => 60n + 6 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 60n + 6 ) - ( 60n + 5 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 12n + 1; 30n + 2 ) = 1 nên 12n + 1 và 30n + 2 là nguyên tố cùng nhau

=> \(\frac{12n+1}{30n+2}\) là phân số tối giản

10 tháng 2 2016

Gọi d là ƯCLN ( 12n + 1; 30n + 2 )

=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )

=> 20n + 2 ⋮ d => 2.( 30n + 3 ) ⋮ d => 60n + 6 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 60n + 6 ) - ( 60n + 5 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 12n + 1; 30n + 2 ) = 1 nên 12n + 1 và 30n + 2 là nguyên tố cùng nhau

5 tháng 4 2019

a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow(60n+5)-(60n+4)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số  tối giản với mọi số tự nhiên n

Câu b tự làm

\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)

\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)