Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là : ƯCLN của : 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d
<=> 5(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d
<=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN của 12n + 1 và 30n + 2 = 1
Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)
Gọi d là : ƯCLN của : 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d
<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d
<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN của 12n +1 và 30n +2 = 1
Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\) .
Chúc bạn học tốt !
mk làm 2 nha
C = \(\frac{5}{x-2}\)
=> x - 2 là ước của 5 hay 5 chia hết cho x - 2
Ư(5) = { +-1; +-5 }
Có: x - 2 = 1 => x = 1 + 2 = 3
x - 2 = - 1 => x = -1 + 2 = 1
x - 2 = 5 => x = 5 + 2 = 7
x - 2 = -5 => x = -5 + 2 = -3
Để Cmin => x = 1 để x - 2 = -1
=> \(\frac{5}{x-2}=-5\) đạt Cmin khi x = 1
GỌI UCLN[12N+1VAF30N+2] LÀ D
Suy ra 12n+1 chia hết cho d hoặc 30n+2 chia hết cho d suy ra 5.[12n+1] chia hết cho d hoặc 2.[30n+2] chia hết cho d
suy ra 60n+5 chi hết cho d hoặc 60n+2 chia hết cho d
suy ra [60n+5]-[60n+2] chia hết cho d
suy ra 60n+5-60n+2 chia hết cho d suy ra 1 chia hết cho d suy ra d thuộc ước của 1 và -1
vì d là ước chung lớn nhất nên d =1
VẬY PS12n+1/30n+2 là ps tối giản
\(A=\frac{12n+1}{30n+2}\)
Gọi d là ƯC ( 12n+1 ; 30n+2 )
Ta có :
\(12n+1⋮d\); \(30n+2⋮d\)
\(\Rightarrow12n+1-30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+5-50n+4⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d\in\pm1\)
Kết luận : Vậy A là phân số tối giản với moin số nguyên n
Gọi d là ước chung lớn nhất của 12n+1 và 30n+2
=>(12n+1)chia hết cho d
=>(30n+2) chia hết cho d
=>5(12n+1) - 2(30n+2) chia hết cho d
=>(60n+5) - (60n+4) chia hết cho d
=> 1 chia hết cho d
=> 1=d
Vậy \(\frac{12n+1}{30n+2}\)tối giản với mọi P/s
Tôi giải đúng ko các cậu?
Gọi d = ƯC (12n +1;30n +2).
Ta có: (12n +1) chia hết cho d và (30n + 2) chia hết cho d =>
5(12n +1) chia hết cho d và 2(30n + 2) chia hết cho d
[5(12n +1) – 2(30n +2)] chia hết cho d => 1 chia hết cho d => d = ± 1
=>$ \frac{12n+1}{30n+2}$ là phân số tối giản (n N*)
a, Bạn tham khảo tại đây nhé : https://olm.vn/hoi-dap/question/62013.html
b, Gọi d là ƯCLN(tử;mẫu)
=> \(\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}}\)=> \(\hept{\begin{cases}3\left(14n+17\right)⋮d\\2\left(21n+25\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}\)
Hay \(4n+51-42n-50⋮d\)
=> \(1⋮d\)
Hay ƯCLN(tử;mẫu)=1 Vậy phân số trên là p/s tối giản.
a,
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
a, Gọi UCLN ( 12n + 1 và 30n + 2 ) là d
=> 12n + 1 chia hết cho d
30n + 2 chia hết cho d
Ta có :
12n + 1 = 5 ( 12n + 1 ) = 60n + 5 chia hết cho d
30n + 2 = 2 ( 30n + 2 ) + 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
= 1 chia hết cho d
=) d = 1
=) \(\frac{12n+1}{30n+2}\)là phân số tối giản
Vậy ...
Phần b làm tương tự ~~
Giải từng bài
Bài 1 :
Ta có :
\(\frac{23+n}{40+n}=\frac{3}{4}\)
\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)
\(\Leftrightarrow\)\(92+4n=120+3n\)
\(\Leftrightarrow\)\(4n-3n=120-92\)
\(\Leftrightarrow\)\(n=28\)
Vậy số cần tìm là \(n=28\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)
Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n
Chúc bạn học tốt ~
Đặt UCLN(12n + 1 ; 30n + 2) = d
12n + 1 chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 60n + 4 chia hết cho d
UCLN(60n + 5 ; 60n + 4) = 1
=> d = 1
Vậy 12n + 1 / 30n + 2 luôn tối giản
Đặt d là ƯCLN(12n+1,30n+2)=>12n+1,30n+2 đều chia hết cho d=>60n+5 và 60n+4 chia hết cho d.Vì vậy nên ta có:
(60n+5)-(60n+4) chia hết cho d
=60n+5-60n-4 chia hết cho d
=1 chia hết cho d
=> d=1
Vì d=1 nên 12n+1,30n+2 là 2 số nguyên tố cùng nhau=>phân số trên là phân số tối giản(đpcm)
Gọi d là ƯC(12n + 1, 30n + 2)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{\pm1\right\}\)
\(\RightarrowƯC\left(12n+1,30n+2\right)\in\left\{\pm1\right\}\)
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản với mọi số nguyên n.
Đặt ƯCLN(12n + 1; 30n + 2) = d
=> \(12n+1⋮d\)và \(30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Rightarrow30n+5-30n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
Hay phân số \(A=\frac{12n+1}{30n+2}\)là phân số tối giản với mọi số nguyên n