\(\frac{12n+1}{30n+2}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Gọi d là ƯC(12n + 1, 30n + 2)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{\pm1\right\}\)

\(\RightarrowƯC\left(12n+1,30n+2\right)\in\left\{\pm1\right\}\)

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản với mọi số nguyên n.

11 tháng 3 2018

Đặt ƯCLN(12n + 1; 30n + 2) = d

=> \(12n+1⋮d\)và \(30n+2⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow30n+5-30n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau

Hay phân số \(A=\frac{12n+1}{30n+2}\)là phân số tối giản với mọi số nguyên n

10 tháng 6 2017

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d 

<=> 5(12n + 1) chia hết cho d  , 2(30n + 2) chia hết cho d 

<=> 60n + 5 chia hết cho d  , 60n + 4 chia hết cho d 

=> (60n + 5) - (60n + 4) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 

Vậy ƯCLN của 12n + 1 và 30n + 2 = 1

Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)

10 tháng 6 2017

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d

<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d

<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ƯCLN của 12n +1 và 30n +2 = 1

Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)  .

Chúc bạn học tốt !

10 tháng 8 2015

mk làm 2 nha

C = \(\frac{5}{x-2}\)

=>  x - 2 là ước của 5 hay 5 chia hết cho x - 2 

Ư(5) = { +-1;  +-5 }

Có:         x - 2 = 1 => x = 1 + 2 = 3

              x - 2 = - 1 => x = -1 + 2 = 1

             x - 2 = 5 =>   x = 5 + 2 = 7

            x - 2 = -5 =>  x = -5 + 2 = -3

Để Cmin => x = 1 để x - 2 = -1

=>    \(\frac{5}{x-2}=-5\) đạt Cmin khi x = 1 

3 tháng 5 2016

GỌI UCLN[12N+1VAF30N+2] LÀ D

Suy ra 12n+1 chia hết cho d hoặc 30n+2 chia hết cho d suy ra 5.[12n+1] chia hết cho d hoặc 2.[30n+2] chia hết cho d

suy ra 60n+5 chi hết cho d hoặc 60n+2 chia hết cho d 

suy ra [60n+5]-[60n+2] chia hết cho d

suy ra 60n+5-60n+2 chia hết cho d suy ra 1 chia hết cho d suy ra d thuộc ước của 1 và -1

vì d là ước chung lớn nhất nên d =1

VẬY PS12n+1/30n+2 là ps tối giản

\(A=\frac{12n+1}{30n+2}\)

Gọi d là ƯC ( 12n+1 ; 30n+2 )

Ta có :

\(12n+1⋮d\)\(30n+2⋮d\)

\(\Rightarrow12n+1-30n+2⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+5-50n+4⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d\in\pm1\)

Kết luận : Vậy A là phân số tối giản với moin số nguyên n

19 tháng 4 2021

Gọi d là ước chung lớn nhất của 12n+1 và 30n+2

=>(12n+1)chia hết cho d

=>(30n+2) chia hết cho d

=>5(12n+1) - 2(30n+2) chia hết cho d

=>(60n+5) - (60n+4) chia hết cho d

=>              1 chia hết cho d

=>                    1=d

Vậy \(\frac{12n+1}{30n+2}\)tối giản với mọi P/s

26 tháng 4 2016

Tôi giải đúng ko các cậu?

Gọi d = ƯC (12n +1;30n +2).

      Ta có:  (12n +1) chia hết cho  d  và (30n + 2) chia hết cho  d  =>

5(12n +1)  chia hết cho d  và 2(30n + 2) chia hết cho  d

[5(12n +1) – 2(30n +2)]  chia hết cho d  =>  1 chia hết cho  d  => d =   ±  1

=>$ \frac{12n+1}{30n+2}$ là phân số tối giản (n  N*)

26 tháng 4 2016

Gọi d = ƯC (12n +1;30n +2).

      Ta có:  (12n +1) chia hết cho  d  và (30n + 2) chia hết cho  d  =>

5(12n +1)  chia hết cho d  và 2(30n + 2) chia hết cho  d

[5(12n +1) – 2(30n +2)]  chia hết cho d  =>  1 chia hết cho  d  => d =   ±  1

=>$ \frac{12n+1}{30n+2}$ là phân số tối giản (n  N*)

17 tháng 2 2018

a, Bạn tham khảo tại đây nhé : https://olm.vn/hoi-dap/question/62013.html

b, Gọi d là ƯCLN(tử;mẫu)

=> \(\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}}\)=> \(\hept{\begin{cases}3\left(14n+17\right)⋮d\\2\left(21n+25\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}\)

Hay \(4n+51-42n-50⋮d\)

=> \(1⋮d\)

Hay ƯCLN(tử;mẫu)=1 Vậy phân số trên là p/s tối giản.

14 tháng 7 2018

a,

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản 

30 tháng 4 2018

a, Gọi UCLN ( 12n + 1 và 30n + 2 ) là d

=> 12n + 1 chia hết cho d 

30n + 2 chia hết cho d

Ta có : 

12n + 1 = 5 ( 12n + 1 ) = 60n + 5 chia hết cho d

 30n + 2 = 2 ( 30n + 2 ) + 60n + 4 chia hết cho d

=> ( 60n + 5 ) - ( 60n + 4 )  chia hết cho d

= 1 chia hết cho d

=) d = 1 

=) \(\frac{12n+1}{30n+2}\)là phân số tối giản

Vậy ...

Phần b làm tương tự ~~

14 tháng 5 2018

Toán lật phần giải ra mà tìm:

Hay lên Google

... -_-'

     

16 tháng 3 2018

Giải từng bài 

Bài 1 : 

Ta có : 

\(\frac{23+n}{40+n}=\frac{3}{4}\)

\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)

\(\Leftrightarrow\)\(92+4n=120+3n\)

\(\Leftrightarrow\)\(4n-3n=120-92\)

\(\Leftrightarrow\)\(n=28\)

Vậy số cần tìm là \(n=28\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

Bài 2 : 

\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)

Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n 

Chúc bạn học tốt ~ 

26 tháng 12 2015

Đặt UCLN(12n + 1 ; 30n + 2) = d

12n + 1 chia hết cho d => 60n + 5 chia hết cho d

30n + 2 chia hết cho d =>  60n + 4 chia hết cho d

UCLN(60n + 5 ; 60n + 4) = 1

=> d = 1

Vậy 12n + 1 / 30n + 2 luôn tối giản 

26 tháng 12 2015

Đặt d là ƯCLN(12n+1,30n+2)=>12n+1,30n+2 đều chia hết cho d=>60n+5 và 60n+4 chia hết cho d.Vì vậy nên ta có:

(60n+5)-(60n+4) chia hết cho d

=60n+5-60n-4 chia hết cho d

 =1 chia hết cho d

=> d=1

Vì d=1 nên 12n+1,30n+2 là 2 số nguyên tố cùng nhau=>phân số trên là phân số tối giản(đpcm)